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RELATIVE STATISTICAL MODEL OF CLOCKS AND PHYSICAL
PROPERTIES OF TIME

V. V. Aristov

1. About relative concept of time

The theoretical model of clocks and the appropriate model of time associated with
it is described. The average motion of all particles of the system is taken into account. The
treatment of time as a measure of motion is one of the traditional approaches to
understand the nature of time. We will not observe the historical aspects of this problem
(the literature is very wide). One can note only that this concept has been confirmed by the
new physical theories and above all relativity theory.

Space-time in relativity theory has the four-dimensional status due to the
fundamental character of the speed of light. However the analysis of measuring space and
time allows to set the problem: could these two different procedures be connected in one
manner (of course in different functions)? Namely "time" in this approach could be the
function of values measured by rods. This equation will be the basis of the theory in which
the analogs of known kinematic and dynamic relationships will be constructed.

This approach, it seems, is similar to the Mach principle treated here as the
philosophical statement about the connection between space-time and motion of physical
bodies (formulation of inertial properties in the Mach principle is given in 3). In any case
in our constructions the view that time passes because there are moving bodies is realized.

Some physicists and philosophers noted the importance of modelli ng of clocks and
rods, let us consider only several remarks of known authors.

A.Einstein (1949): "...strictly speaking measuring rods and clocks would have to
be represented as solutions of the basic equations (objects consisting of moving atomic
configurations), not, as it were, as theoretically self-sufficient entities. However, the
procedure justifies itself because it was clear from the very beginning that the postulates of
the theory are not strong enough to deduce from them sufficiently complete equations for
physical events sufficiently free from arbitrariness, in order to base upon such a foundation
a theory of measuring rods and clocks. If one did not wish to forego a physical
interpretation of the coordinates in general (something which, in itself, would be possible),
it was better to permit such inconsistency with the  obligation, however, of eliminating it
at a later stage of the theory".

A.Poincaré (1913) proposed that space is amorphous, loose solidness form, which
could be applied to all indiscriminately; it does not have any properties of its own. To
engage on geometry  it means to study  properties  of  our instruments, i.e. properties of a
solid body. These notions concerning space are applied to time too.

W.Pauli (1956): "I think it could not be very difficult to construct a model of
clocks if the existance of matter would be put in mathematical terms of the theory. It
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seems that it would not be an arbitrary system because the clock model have to measure
the proper time ds2."

Last time some possible theoretical concepts of space-time have been discussed.
For example E.Zimmerman assumed that space-time arises due to particle counteractions.
It is applicable only to macroscopic objects likewise thermodynamics quantities. However
no mathematical model has been proposed.

In our constructions a clock pace shall be modelled as a function depending on
motion of a very large number of particles (the limiting number could be chosen equal to
the Eddington number of nucleons in the metagalaxy, that is approximately 1080 ).

Such notions on clock properties (hence, and the physical time) are associated
with real motion of a certain physical objects in every ordinary clock. It may be the sun, a
hand of a clock and so on. However, a clock pace must not be connected with a motion of
an arbitrary choosing body, because it, for instance, could be stopped relative to the fixed
frame of reference. The usual point of view treats a clock pace as the uninterrupted and
the equable one. The equabili ty is the property of uniformity of a time course realized by a
clock. It is supposed that the ideal clock have to work uninterruptedly. Of course a certain
clock can be stopped but "a sum" of all clocks (and of all moving objects) have to model a
time course. The equabili ty is the property understood intuitively (this problem will be
discussed in details in 6.). Both mentioned properties could be satisfied if we consider an
averaged motion of N particles belonging to the given system, which would model "the
sum" of the particle motion in the world. Every particle movement will be defined as space
displacement between two "experiments" without regard to time itself.

The present model deals with random particle motions in contrast to the traditional
physical clock's model constructed by using periodical processes. A large number particle
averaging results in small differences between the model theory and the traditional one. A
statistical error depends on the particle number, therefore the model corresponds to the
traditional theory when the particle number tends to infinity. From our point of view the
usually emphasized periodical property of clocks is a secondary one permitted to define
conveniently a time unity. The property of equabili ty of clock's pace (temporal equabili ty)
is more important. And a clock pace has a "historical" character, because a pace of clock's
standards was corrected permanently by arranging the motion of astronomical and another
objects.

A time interval between two "experiments" in which space positions are fixed, is
defined as a mean square of differentials of all particle radius vectors. The distinguishing
feature of the model is the use of some integral characteristic covering all particles in the
system. On the other hand it is important that a time interval is defined for infinitesimal
displacements of all particles. It means that the integral and the differential characteristics
appear in the unified equation.

On the basis of this equation the Galil ean transformations and analogs of the
dynamics equations are derived. The relativistic generalization is found. The possible
distinctions from the traditional theory due to statisticity of the model are investigated.

For the present model the quantitative expression of the statement that time is a
measure of changes of system states is given. The state is treated as a set of all particle
coordinates. And the instant of the model time is now not the point on the time axis but
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the point in the 3N-dimensional configuration space. Conclusions about the properties of
physical time can be deduced, in particular to consider a problem on irreversibility of time.

In the last paragraph prospects of this concept are discussed. Apart from "the
world time" a construction "the internal time" for a subsystem with the number of particles
less than that in the whole system. Such conversion of times constitutes a sort of
hierarchy. The possible generalizations connected with the creation of other types of
clocks are also discussed.

2. The basic definitions of the model and obtaining the classical kinematic
relationships

For construction of a classical clock the system of N identical particles (atoms) is
considered. Time will be determined by motion of all particles under consideration. The
motion is specified by changes of spatial positions of particles in a given reference frame.

It is well known that as a rule a geometrical frame of reference supplemented by a
clock  is denoted as a frame of reference. (A continuum of geometrical points with fixed
distances between them is denoted as a geometrical solid media which is taken as a
geometrical frame of reference.) Let us consider the system of particles at rest (the term
"at rest" will be defined later). They have numbers from 1 to L (it is supposed that all
particles may be labeled). Such discrete system will be an approximation for abstract
continual solid media. In proposal model time is not an original quantity therefore a clock
is not an original element of reference frame.

Let us define spatial displacement (motion) of particles. It is supposed that there is
a physical signal (light) whereby all spatial points can be connected. In every point of
space (for a given references frame the coordinate system is introduced) the ideal device
("a camera") is placed. One can obtain "pictures", e.g. note positions of all particles of the
world. If mutual position of several particles (for instance with numbers 1, ..., L) on
different "pictures" does not vary, then such group of particles is said to be "motionless".
By using this "unmoved body" the reference frame is, in fact, introduced.

Assume that Cartesian coordinates in a given reference frame are introduced. Then
in "pictures" one can fix positions of all world particles near coordinate markers.
Therefore there is the correspondence between the particles and coordinate markers at a
given "picture". A set of radius vectors of all particles obtained by "the camera" will be
named "experiment". If "the camera" is situated at the point A, the "experiment" is

R(A) ={
�

r 1(A), ..., 
�

r N(A)}.
At first the classical nonrelativistic situation will be considered. It is supposed that

there is the universal light signal, i.e. all points of reference frame could be connected by
this signal and all "pictures" will be identical (from the viewpoint of the relative positions
of the particles).

It is natural to refer all these "pictures" to the same moment of the model time.
Therefore one can use in a given reference frame only the single "camera" situated, e.g., at
the origin of the coordinates. (This situation is analogous to the classical one where the
reference frame can be supplemented by the single clock spaced at the origin.)
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Let us introduce the model time τ (a correspondence of this theoretical time to
time measured by an ordinary physical clock will be discussed in 6.). Let us suppose that

the value of the time interval dτ is the function of differences of spatial positions (for all
particles). The desired properties for this function could be formulated in advance:

1) it is required of dτ that it equals to zero if all arguments are equal to zero;
2) it is non-negative at every argument value that is consistent with the preposition

about time flow which has one direction (the problem of irreversible time will be discussed
in 6.);

3) it is symmetrical for all arguments;
Consider two "experiments":

R(1)
(A)={ 

�

r (1)
i(A)}, R(2)

(A)={ 
�

r (2)
i(A)}, i=1, ..., N.

Let us suppose that particles have been displaced on infinitesimal distances
between two "experiments", i. e.

d
�

r i(A) = 
�

r (2)
i(A) -

�

r (1)
i(A).

The time interval dτ which has passed between these two "experiments" is defined in such
manner:

d
N

dr
N

drA i A j A
j

N

i

N

τ ( ) ( ) ( )
2

2

1

2

1

1
= −











==
∑∑a � �

.                           (1)

The possibility of motion of every particle "there and back" is excluded due to the fact
that all movements are infinitesimal (for this purpose one have to push the button of "the

camera" sufficiently rapidly). Otherwise dτ2
(A) could be zero if all particles reverted to the

initial positions up to the second "experiment".

Note that the quantity dτ2
(A) is equal to zero when all values d

�

r i(A) are equal to

the mean value 
1

1N drj A
j

N
�

( )
=
∑ , i.e. in the case when all movements are identical. In

principle one could consider this fact as natural restrictions of the model: time doesn' t pass
if the world moves as undivided object. However this case is not realized under our
assumption because there are L unmoved particles with respect to another ("unmoved

body"); then one can see that dτ is not equal to zero (if only all other particles are not at
rest with respect to a given L particles).

The sign (A) marked the point where "the camera" is placed, could be reduced
accordingly to previous argumentation. Let us assume that a multiplier a is a constant. For
nonrelativistic approximation this quantity is only the coefficient (with the dimension of
ratio of time on distance). In the relativistic case a is connected with the velocity of light
(see 5.).

The velocity of every particle is determined naturally

i
idr

d i = 1,  ... ,  N
�

�

u = τ , . (2)

It follows immediately from (1) and (2) that
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1
2

2 i j
j=1

N

i=1

N1

N

1

Na
= − ∑



∑ � �

u u . (3)

Thus the quantity 1/a is equal to the mean square velocity of all particles.
The form of the model time interval according to Eq. 1 is justified by subtracting

the value 
1

1N drj A
j

N
�

( )
=
∑  characterising a motion of the center of mass leading to the time

interval dτ2 which describes the sum of "chaotic part" of N moving particles. This
statistical sum is analogous to the expression for a temperature in the kinetic theory of
gases. But an essential difference is obvious, because there are infinitesimal quantities in
Eq. 1. And there is an integral value (the sum) on the right-hand side of Eq. 1, of course
one can try to transform this sum into appropriate integral.

Now the kinematic relationships will be obtained. Let us consider the translational
motion of one reference frame relative to the other. Let us suppose that images of
particles on "pictures" will coincide at two close points A and A' in two different
reference frames. This natural assumption is in agreement with the classical view about the
existence of the universal light signal. But the coordinate markers for these images in
different frames will be different (because coordinates of A and A' in their reference
frames are different in general ). And this difference for all coordinate markers is equal to
the difference between A and A' coordinates.

Let us consider two reference frames moving translationally one related to
another. The first "experiments" are made when origins are in line. Then

R(1)
(O)={

�

r (1)
i(O)}, R(1)

(O' )={ 
�

r '(1)
i(O' )}, 

�

r '(1)
i(O' )= 

�

r (1)
i(O), i=1, ..., N ,

where O and O' are origins of "laboratory" and "primed" reference frames respectively.
The second "experiments" are obtained when the point O' is displaced relatively to the
point O and is located near the point A of the "laboratory" reference frame. We have

R(2)
(O)={ 

�

r (2)
i(O)}, R(2)

(A)={
�

r (2)
i(A)}, R(1)

(O' )={
�

r '(2)
i(O' )}, i=1, ..., N.

According to the existence of the universal light signal "experiments" the times at
the points A and O obtained at this moment are identical, i.e.

�

r (2)
i(O) = 

�

r (2)
i(A) , i =1, ..., N.

The difference between the coordinate markers obtained in the second "experiment" for
the "primed" reference frame and coordinate markers of the "laboratory" frame is equal to
the displacement of the point A from the point O. This displacement is equal to

d
�

r (AO) = 
�

r (2)
A(O) - 

�

r (1)
O(O).

Here 
�

r (1)
O(O) is the radius vector of the point O, determined in the first

"experiment" (
�

r (1)
O(O) = 0 because the point O is the origin of the coordinates), 

�

r (2)
A(O)

is the radius vector of the point A, which is determined in the second "experiment". Then
�

r '(2)
i(O' )= 

�

r (2)
i(O) - d

�

r (AO) , i=1, ..., N.



6

After subtracting the value 
�

r '(1)
i(O' )  from the left-hand side of  this equality  and

�

r (1)
i(O) analogously from the right-hand side, one has relationships between

displacements of radius vectors
d

�

r 'i(O' ) = d
�

r i(O) - d
�

r (AO), i=1, ..., N ,
where d

�

r 'i(O' ) = 
�

r '(2)
i(O' )  - 

�

r '(1)
i(O' ) , d

�

r i(O) = 
�

r (2)
i(O)  - 

�

r (1)
i(O)  .

The expression for dτ'(O' ) is analogous to Eq. 1:

(O')
2

2

i(O') j(O')
j=1

N

i=1

N

d N

1

N′ = ′ ′∑



∑τ −a

2

dr dr
� �

. (4)

Substituting Eq. 4 into the right-hand side of this equality we have

( )(O')
2

2

i(O) (AO) j(O) (AO)
j=1

N

i=1

N

2

i(O) j(O)
j=1

N

i=1

N

d N

1

N

N

1

N

τ'

.

=

=

−∑



∑

∑



∑

a

a

2

2

dr dr dr dr

dr dr

� � � �

� �

− −

−

It denotes that
dτ'(O' )=dτ(O) . (5)

The quantity 0
(AO)

(O)d

�

�

u
dr

=
τ

 is the velocity of the origin of "primed" reference frame

(or the velocity of a particle connected with it). Therefore, Eq. 4 is the Galilean
transformation, which can be written in the usual form:

d
�

r 'i(O' ) = d
�

r i(O) - 
�

u0dτ(O). (6)

It is of importance that the Galilean group is not postulated now, but is contained
in Eq. 1. The transformations for velocities are (as consequences of Eq. 5 and Eq. 6):

�

u'i=
�

u i - 
�

u0 , i=1, ..., N. (7)

These transformations are valid for all reference frames moving at least
translationally relative to each other (it is not necessary with constant velocity). Concept
of the inertial system is not defined yet. Let us formulate the criterion defined the inertial
reference frame. Find the connection between the proposed mathematical relationships
and equations of dynamics of  Newton' s mechanics.

3. Obtaining the relationships of dynamics in the model

Eq. 1 is the basis for deriving analogs of the conservation laws and equations of
motion (it would be more correctly to denote these consequences not as "conservation
laws" because they are theorems now). Let us introduce the conditions which define the
inertial reference frame.
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The global characteristic of all particles appears in Eq. 1 for the model time
interval. Therefore, it is natural to expect that the definition of the inertial system is
concerned with the Mach principle.

After simple transformations on the right-hand side of Eq. 3 we obtain

1 1 1
2

2

11

2

a
= −











==
∑∑

N
u

N
ui j

j

N

i

N
�

.

Let us study now the dynamic properties of a system of M particles. Rewrite the
last equality as follows:

i
i=1

M

i
i=M+1

N
2

j=1

N
u u N

1

N
2 2∑ ∑ ∑







+ − =�

u
N

j a 2  . (8)

The inertial properties of the given frame of reference will be determined through
the dynamic characteristics of N-M particles (or through the dynamic characteristics of
M particles that is the traditional approach to determine the inertial properties). And the
criterion of inertiality of the reference frame will be formulated.

Recall that the reference frame of the given model consists of "unmoved body" of
some L particles and "moving body" (i.e. all particles moved relative to "unmoved body").
Whether the reference frame can be named inertial or not depends on the character of the
particles motion relative to the "unmoved body". If the other set of particles is chosen as
"unmoved body" (e.g. with numbers L+1, ..., L1) the motion of  N-M particles relative

to the novel "unmoved body" can have other properties. As a consequence the novel
reference frame can alter the inertial properties itself.

The group properties of relationship under consideration can be used to derive the
equation for the vector measure (momentum) from the equation for the scalar measure of
motion (kinetic energy). It is known that if a function is invariant under some continuous
transformation then it is governed by the equations prescribed in terms of the infinitesimal
operators. In our case such group is the three-parametric Galilean group, hence there are
three equations. If the kinetic energy is conserved and this property is invariant then the
momentum is also conserved. (Note that the methodological considerations on this topics
have been developed by Sorokin (1956) and reproduced by Iserman (1974).) The
distinguishing feature of our model is that the Galilean transformations are not postulated
but derived.

At first let us consider a simple example of an inertial frame of reference. Assume that

the velocity of the center of mass of all particles is constant, i.e. 
du

d
0

�

τ
=  where

� �

u u= ∑1

N i
i=1

N

. It is of interest that Mach (1904) has defined the mentioned reference frame

as inertial. It can be seen from Eq. 6 that every reference frame which moves with
constant velocity relative to that mentioned is also inertial. One can conclude from Eq. 8
that the total kinetic energy of all particles is constant for this class of reference frames.
On the basis of the group properties one can deduce from this fact the conservation of the
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total momentum (however this conclusion is followed by that the velocity of the center of
mass is constant). Let us propose that our system of M particles is closed (isolated), i.e.
interactions of this particle system with the other particles are negligible. If we have two

separated parts of the world then one can suppose that 
N - MdE

d
0

τ
= , where

N-M i
2

i=M+1

N

E u= ∑ , and from Eq. 8 we deduce that 
d

d
ui

i=1

M

τ
2 0∑ =  too. Because the last

equality is invariant under Galilean transformations (it is valid for the mentioned class of
reference frames) one can write

α τ
αΧ

d

d
ui

2

i=1

M

∑





 = =0 1 2 3, , , , (9)

where the infinitesimal transformations of the given group have the form (e.g. for the
velocity component u0x):

1

00

X = = −


 


∑ ∑

∂

∂

∂
∂

u

u
ix

ix

'

xi=1

N

i=1

N

u
 .

After substituting these operators into Eq .9 we obtain

�

u i =∑ const
i=1

M

. (10)

Let us multiply both parts of Eq.10 by me (we emphasize that for the simplest

model of identical particles (atoms) the magnitude of the mass does not play the role, e.g.
one can assume that it is equal to the mass of a nucleon). We have

m u conste i
i

M
�

=
=
∑

1
. (11)

That is the total momentum of the system of M particles is conserved. In general
let us formulate the following condition (criterion) of inertiality of the reference frame
under consideration:

a) ( )α τ
Χ

d

d
E NuN-M −



 


 =

� 2 0.

As is easy to see from the condition a) that Eq. 10 and Eq. 11 are deduced.
Note that in this general case the first sum in Eq. 8 (the kinetic energy of the

system) need not always be conserved. And the following relation is not always valid

m u conste i
i M

M
�

=
= +
∑

1
because the equality

m u conste i
i

M
�

=
=
∑

1



9

is not always valid.
Indeed, from Eq. 8 one can see that the subtraction of the kinetic energy of the

world and that of the center of mass is constant. So if the total kinetic energy

E =
1

2 i=1

N

m ue i
2∑

is varied then the total momentum of N particles is also varied. Assume that the

infinitesimal operator Xα at M=N acted on the appropriate value in Eq. 8, then we
deduce

α τ
Χ

d

d
N

1

Ni=1

N
2

j=1

N

u ui j
2 0∑ ∑





−


























 = .

That is we have the identity

u uix
i

ix
i= =

∑ ∑− =
1 1

0
N N

or in the vector form

�

u i
i=
∑

1

N

−
�

u i
i=
∑

1

N

= 0.

One cannot conclude the identity about the conservation of the value
�

u i
i=
∑

1

N

.

Hence, the total kinetic energy may be constant or not. If M=1 then we have the analog
of the first Newton' s law. Assuming that M=2, we obtain from Eq. 11

m
du
d m

du
de e

� �

1 2

τ τ= −  . (12)

Let us denote the expression on the right-hand side of Eq. 12 as the force 
�

F1,2
acted on the first particle from the second one (in such a way a concept of force is
defined). Then we obtain the analog of the second Newton' s law. Accordingly the force

�

F2,1  acts from the first particle to the second one and we obtain the analog of third
Newton' s law. If the condition a) is not obeyed then the frame of reference is noninertial.

In the proposed model the inertial properties are consistent with the Mach
principle. If the condition is not obeyed then the model describes at least all noninertial
reference frames moved translationally and accelerately relative to an inertial reference
frame. Let us consider, for instance, such noninertial frame of reference. Assume that its

velocity with respect to the noninertial one is 
�

u0(τ). We know that  
du

d

�

0 0
( )τ
τ ≠ .

Assume that M=1. In the inertial frame of reference this particle (the first) moves
with a constant velocity, i.e. 

�

u1=const.
The transformations in Eq. 7 are valid, and for the translationary accelerated

reference frame we obtain



10

du'

d '

du

d

du

d

du

d
1 1

� � � �

τ τ τ τ
= − = − ≠0 0 0 .

Of course the first Newton' s law is not true here.
Let us write the form correspondent to the inertial force in this case. If we

differentiate all terms in the equality

Nu'
i=1

N
� �

= ∑u i'  ,

we obtain

e
1

e
i=1

N

em
du'
d

d
d m u' m Nu'

�

� �

τ τ= − +








 ≠∑ 0 .

One can treat the value on the right-hand side as the force acted on the first
particle from all particles of the world.

Here the Mach principle is formulated in terms of the equations of motion.
However the expression for force dependent on distance needs to be introduced. For this
purpose the model of rods (and space) must be constructed.

4. Effects due to the statistical character of the model and correspondence
to the traditional theory

We must define the relation between the given mathematical model of clocks (the

time τ) and the real physical clocks (the time τc). Let us consider N vector stochastic

processes. Assume that they simulate the quantities d
�

r i (i=1, ..., N) (taking into account

the character of obtaining "pictures"). Then i i j
j=1

N

dr drη = − ∑





2
1

� �

N
 are probable

functions as well. Assume for "ideal physical clock" that the following relation is valid
dτc

2=M0(dτ2), (13)

where M0 is the mathematical expectation of the probable quantity dτ2 therefore, more

closely

c
2

0

2

i j
j=1

N

i=1

N 2

i j
j=1

N

i=1

N

d M
N dr'

1

N dr' N
M dr'

1

N dr'τ' =












 =− ∑



∑ − ∑



∑a a

2 2

0
� � � � .

dτc is defined below. One can suppose that a pace of real clocks has been formed by

creating more and more accurate standards of time.

The value ηi averaged in such a way could correspond to the value M0(ηi) (and

for all particles to the value 
1

0
2

1N
M i

i

N

( )η
=
∑  respectively).
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Assume that independent random variables ηi have finite variances and have the

same distribution. Then at the conditions of the limit theorem

a a2 2

0
11

2

N N
M

D d

Ni
i

N

i
i

N

η η
τ

−
==
∑∑ ( ) ~

( )
 ,

where the variance D d
N

D i
i

N

( )τ η2
2

1
=









=
∑a

. If this value is the order of dτ2 then

d d

d N
cτ τ

τ

2 2

2
1−

~  . (14)

Of course the readings of the certain real physical clock can differ from the "ideal

physical clock' s readings" closed to dτ according to Eq. 14 (in the framework of the
adopted probabilistic model). It denotes that with a certain type of a clock (e.g. atomic)

one can obtain deviations in any case not less than  O( )1 / N .

When N→∞ the value dτc tends to dτ (on possibility). Then, all equations of the

classical theory are obeyed exactly. This is the statement of correspondence between the
model and traditional equations.

It is of importance to emphasize that our equations (the value dτ appears there)
are, in fact, the consequences of the mathematical postulates. On the basis of mathematical
axioms one can carry out from Eq. 1 some expressions (the time is measured accordingly
with Eq. 1 through space variables and the original equation is, in fact, the identity). This
reduction of equations to dimensionless form leads us to propose that the basis of our
knowledge is the mathematical postulates and the physical sense appeared after
exchanging the formal mathematical quantities into the physically measured quantities.
One can say that through clocks and rods the mathematical equations are "projected" into
the sensitive experience.

Therefore the mathematical value dτ must be replaced by the physically measured

value dτc . After this substitution the analogs of Newton' s equations are valid with

accuracy  O( )1 / N . Hence, those are the effects in which the developed theory is

different from the traditional one. These deviations however are beyond the limits of

recent apparatus: for N~1080, 1 / N ~ 10-40 .
These deviations could be compared with the hypothesis of Lawrence and Szamosi

(1974) about the mass distribution of elementary particles for obtaining the relations
between fundamental quantities (so-called cosmological coincidences). These fluctuations

is of the order of  1 / N .
Note that in the project of "the fundamental theory" (Eddington,1949) all distances

are determined with relative accuracies not more than O( )1 / N  hence and in this

theory the fluctuations of such orders appear.
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5. Relativistic generalization of the model

Up to now the model has been restricted by the supposition that the existence of
the uniform light signal gave the identical "pictures" in spaced-differed points. Let us
consider more general situation where this condition will not be valid. The relationships of
the special theory of relativity will be found.

At these conditions, for instance, the equality for the second "experiments" used
for deducing Eq. 4 is not valid now, one can write

i(0)
(2)

i(A)
(2)r r ,  i = 1,  ...,  N≠

and correspondent d
�

r i(O) = 
�

r (2)
i(O) - 

�

r (1)
i(O) could not be changed by the expression

d
�

r i(AO) = 
�

r (2)
i(A) - 

�

r (1)
i(O).

Now there is no uniform (absolute) time, because dτ(O) is not equal to dτ'(O' ).

However one can try to construct the model of the proper time (in the way of mentioned
words of Pauli (1956)).

The proper time in the "primed" reference frame has the form

d N dr N drO i O j O
j

N

i

N

τ' ' '( ') ( ') ( ')
2

2

11

2
1

= −










==
∑∑a � �

 .                               (15)

On the basis of the "proper" values measured by "the camera" connected with the
particle under study (located at the origin of "primed" reference frame) the values d

�

r i(OA)
are defined in such a way

d
�

r i(OA) = 
�

r 'i(O' ) - 
�

r i(OA), i=1, ..., N . (16)

These values are referred to the points O and A because at least for the point A the value
d

�

r (OA) can be determined by two "pictures" correspondent to the first "experiment" in

the point O and the second "experiment" in the point A (really, d
�

r '(O' ) = 0). Another

values d
�

r 'i(OA) defined by Eq. 15 cannot be measured through the "difference" between

two "experiments" at A and O. Actually: the photography images of moving and
unmoving objects are different (the literature on this question is quite voluminous,  see for
example the recent review (Bolotovsky, 1990)). Therefore the relationships between the
particle coordinates for "experiments" obtained in different reference frames are not the
simple shift according to Eq. 16.

Let us construct the model time interval on the basis of values

d N dr N drOA i OA j OA
j

N

i

N

τ' ' '( ) ( ) ( )
2

2

11

2
1

= −










==
∑∑a � �

. (17)

As a consequence of Eq. 16
dτ(OA) = dτ'(O' ) . (18)

Now the relativistic time dt(OA) between two events (the first one is moving the

point O' near to O and the second one is moving of the point O' near to A) is defined as
follows
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dt N dr N dr drOA i OA j OA OA
j

N

i

N

( ) ( ) ( ) ( )' ' '2
2

11

2
1

= − +










==
∑∑a �

. (19)

Here the term which describes the "slowing-down" is added (for every term of this
statistical sum). Uncover the squares on the right-hand side of Eq. 19 after summation we
have

dt2(OA) = dτ2
(OA)+a2d

�

r 2
(OA). (20)

Or rewriting Eq. 20 we obtain known expression from special theory of relativity:

dτ'2(O' )=dτ2
(OA)=dt2(OA) -a2d

�

r 2
(OA). (21)

One can find the limitation of the particle velocity from Eq. 20 (it is proposed that
the origin O' is connectd with the particle under consideration):

v
dr

d drOA
OA

OA OA
( )

( )

( ) ( )

2
2

2 2 2 2
1

=
+

≤
�

�

τ a a
 . (22)

The quantity 1/a limits the velocity and therefore it is associated with the light
velocity in vacuum, i.e.

a = 1/c .
The limiting value 1/a is attained at dτ(OA)=0 or when the velocity 

�

u (OA) tends

to infinity. Note that from Eq. 3 it is evident that a = 1/c is the mean square velocity of
particles of the world. Of course it does not contradict the theory of relativity. Indeed, the
time from Eq. 15 is determined through the "experiments" in the same space point. The
time interval dt(OA) is determined by the measurements in two different points.

(Synchronization of such relativistic clocks is analogous to Einstein' s synchronization
according to Eq. 20).

The relation between 
�

u (OA) and 
�

v (OA) is similar to the relation between the

relativistic and the proper velocities:

� �

�

�

� �

�

�
v v

u

u c
u u

v

v c
OA OA0

2 2 0
2

0
2 2 0

2 2 0
2

0
2 21 1

= =
+

= =
−( ) ( )

/
,

/
 .

Note that the time from Eq. 19 tends to the model time given by Eq. 1 if A tends to

O (i.e. if the particle connected with the origin is unmoved). Analogously dτ'(O' )=dt'(O' ).

From Eq. 21 we have
dr

dt dt v c
O

O OA

�

' ,

' / .
( ')

( ') ( )

=
= −





0

1 0
2 2

.
(23)

This is the special case of the Lorentz transformations. We emphasize that in
contrast to the mentioned Galilean transformations which are valid for every point, the
Lorentz transformations are valid only for one space point in which the particle under
consideration is placed.

With Eq. 23 one can derive the equations of relativistic dynamics, but at first let us
consider the Lorentz transformations in general. Assume as before that the first event is
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the moving of the particle near the origin O and the second one is the moving of it near
the point B. Now the point B' (not consistent with O') is correspondent to B. As before
the point A' is correspondent to O'. Let us associate a given particle with the origin O'' of
the proper reference frame. The proper time at this point is written analogously as Eq. 15:

d
N

dr
N

drO i O j O
j

N

i

N

τ" " "( ") ( ") ( ")
2

2

11

2
1

= −










==
∑∑a � �

 .                     (24)

By means of the quantities d
�

r "i(O") obtained through two "experiments" in the

given reference frame the quantities d
�

r 'i(O' B' ) and d
�

r i(OB) for "primed" and "laboratory"

reference frames respectively are defined analogously as Eq. 16.
d

�

r 'i(O' B' )=d
�

r "i(O")+d
�

r '(O' B' ), d
�

r i(OB)=d
�

r "i(O")+d
�

r  (OB) . (25)

Let us introduce the following quantities:

d
N

dr
N

dr

d
N

dr
N

dr

O B i O B j O B
j

N

i

N

OB i OB j OB
j

N

i

N

τ

τ

' ' ' ,

.

( ' ') ( ' ') ( ' ')

( ) ( ) ( )

2
2

11

2

2
2

11

2

1

1

= −










= −










==

==

∑∑

∑∑

a

a

� �

� �

One can see from Eq. 25 that these values are equivalent to the value of the time
interval Eq. 24:

dτ'(O' B' )=dτ"(O"), dτ(OB)=dτ"(O").

Define the relativistic time analogously to Eq. 19

dt
N

dr
N

dr dr

dt
N

dr
N

dr dr

O B i O B j O B
j

N

O B
i

N

OB i OB j OB
j

N

OB
i

N

' ' ' ' ,

.

( ' ') ( ' ') ( ' ') ( ' ')

( ) ( ) ( ) ( )

2
2

11

2

2
2

11

2

1

1

= − +










= − +










==

==

∑∑

∑∑

a

a

� � �

� � �

And one can find the final relation

dt
dr

c
dt

dr

cO B'
O B'

OB)
OB)

' .( ' )
( ' )

(
(2

2

2
2

2

2− = −
� �

It follows hereof the Lorentz transformation in general situation (if it is supposed
as usual the linear dependence between dt'(O' B' ) and dx'(O' B' ) on dt(OB) and dx(OB)).

The equations of dynamics with the invariant time are deduced in the same manner
as in Eq. 3. Because the form of this statistical function of time in Eq. 17 is the same as in
Eq. 1 the equation of motion will be similar. For example for a certain particle (first) one
can write

m
d
d

dr
d Fe Mτ τ

�

�

1
1



 


 =  . (26)
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Here the invariant form of the relativistic dynamics equation is presented. The three-
dimensional part of the four-vector of the Minkowski force appears in the right-hand side

of Eq. 26. Changing dτ to dt we have
dp

dt v c
FM

�

�

1

1
2 2 1

1−
=

/
 ,

where 
�

�

p
m v

v c
e

1
1

1
2 21

=
− /

 is the relativistic momentum of particle, 
dp

dt
F

�

�1
1=   is the

relativistic generalization of Newton’s force.
Introducing the work in the usual manner we obtain from Eq. 26 the known

expression for the relativistic energy.
If the number of particles N is finite, there is a distinction from the standard

theory. Strictly speaking the conclusion about the limitation of mass of the metagalaxy
could be made only after developing the model for general relativity case (it is required to
construct the model of rods). However, statistical effects of mentioned order must, in our
opinion, appear at several levels of the theory (in particular as small fluctuations of
metric). On the other hand the magnitude of the square root of  N corresponds to the so-
called cosmological coincidences. It is interesting to note that H.Weyl (1949) said that the
Mach postulate is awaiting the theory itself (would be the statistical theory of gravitation,

to which the square root in the law  ε≈ 1/ N  points to)?. Here the hypothetical relation

between ε (the ratio of the constants of gravitational and electromagnetic fields) and the
number of particles N is discussed.

6. Properties of time and possible improvements of the model

Up to now mainly the metric time properties of the clock model were studied.
However, one can note that the given model has a "surplusity" allowed to describe time
features in more detailed way as compared with the traditional model. Namely in our
constructions the notion "time instant" is the state of the world characterized by 3N
parameters in the configuration space.

Here the numerous philosophical problems connected with the concept of time are
not discussed. Note that only the given model time is associated with the concept
"motion". The ontological basis of the given time is in the original possibili ty of
distinguishing "subject" - "object". The question about origin of motion in the world is not
considered now.

Let us describe briefly the peculiarities of fixing of particles motion itself in the
model. So we consider the elements from which the time interval has been constructed.
The problem of "the present" has been discussed in detail by Aristotle. In the given model
"the present" (i.e. "instant") is purely spatial, it has no temporal characteristic. The time is
added by small intervals which are determined through differences of "instants". As
mentioned above the pairs of "pictures" have been used for this process. Note, however,
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that in the "pictures" not only the radius vectors 
�

r i are fixed but the small values d
�

r i too.

Indeed, "the camera" has a finite time of photographing, therefore all moving particles
images are "unclear". Hence, the traces of particle motions are given. The origins and the
ends of the vectors d

�

r i can be fixed. For example when one pushes the camera button the

red light filter could be worked and at the end of the photography process the blue light
filter could be worked. Thus the origins of mentioned vectors are red and the ends of the
vectors are blue.

1) Description of time course and the problem of "reversible time"

In the definition of dτ in Eq. 1 the question about the time direction has not been
set yet. Here the quadratic quantities appear. It shows that the sequence of "experiments"

is not of importance. The sign of dτ is chosen as positive. It is correspondent to the fact
that the classical time has one direction. And as a result the equations of mechanics with
reversible time have been obtained. (Traditionally the reversibility of time in mechanics is
understood as a fact that the equations are invariant relative to the alternation of signs of
time and particle velocities.)

However the question on the reversible time can be set in a wider sense than in
mechanics itself. Let us consider the description of time course. For this aim one have to
use more complex instrument, namely "a camera with a memory", i.e. "the camera"
supplemented by the apparatus capable to fix the order of obtaining "experiments". (Note
that some  philosophers suppose that the concept of memory is necessary to define the
idea of time).

At first "the memory" in such apparatus is blank. Let us obtain "the experiment"
and memorize it. Note this "experiment" by the number 1. Obtain the other "experiment"
for which all radius vectors are different from the first one at the infinitesimal magnitudes.
For the new "experiment"which is also fixed in "the memory" number 2 is assigned and so
on.

It is of importance that here there is no originally given sequence of time instants.
The mentioned procedure of construction of instants is sufficient for modelling the
intuitive understanding course of time. One can connect the sequence of "experiments"
obtained by such manner with the increasing set of integers. (This process is analogous to
some extent to the changing of integers in an electronic clock.) This sequence determines
the direction of time.

"The irreversibility" of time is connected with the differences of "experiments" at
the different moments of time. The possibility of a coincidence of two different
"experiments" is extremely small if particle movements are random. If a certain
"experiment" is identical with the other "experiment" then could be assumed that the time
"passed back" (from the dynamical point of view two states of the world will be identical
if not only the radius vectors but also all particles' v elocities are the same). This situation
of a negligible possibility is assoiciated with "the reversibility" of time.

2) Generalization of the model time for different particle systems.
The model clocks (and accordingly the times) could be constructed for different

numbers of particles in the system under consideration. The minimum particle number is
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2. If there is only one particle then the model time does not pass because the frame of
reference must be connected with this particle.

"The internal time" of a system of N1 particles could be introduced by the sum

analogously to Eq. 1. If this number is small, then one can control the time course of such
"microcosm". The multiplier a2 in Eq. 1 describes the thermodynamical properties of the
world. For the system with N1 the other multiplier a1

2 can be used. It characterizes the

thermodynamical properties of this system itself and is equal to the ratio of the particle
mass and the system temperature. Therefore one can construct the hierarchy of "the inner
times" for systems with different numbers of particles: N1, N2,... . "The world time" with

the limiting large number N is the limiting scale in such hierarchy.
May be it is more convenient to use the single multiplier a2 for comparing the

different "inner times".
One can try to extrapolate these notions of the physical time to more complex

systems where the biological, the geographic, the geological times could be defined. Some
quasiparticles must be determined in the given systems. Then "the inner time" could be
constructed by the mentioned manner through observing the moving of such "particles".

It is of interest to generalize the model for nonequilibrium systems itself. It is
desirable to construct "the nonequilibrium time", i.e the time which does not run when the
system is at equilibrium. At the enthropy maximum of the closed system such time will be
stopped (it corresponds to some scientists' way of thinking that the time concept must be
introduced for nonequilibrium systems only). Emphasize that in this situation the time
interval from Eq. 1 is not equal to zero.

This is not the homogeneity in the nonequilibrium system, therefore for
generalization let us divide the system into p parts. Every part is at near homogeneous
conditions. Assume N is the number of particles in the system, then

N N
p

l
l=
∑ =

1
 .

For every part "the inner time" is constructed. Let us define the interval of "the
nonequilibrium time" as

d p d N dr N drp i j
j

N

i

Np

τ τ2 2
2

1

2

11

1 1
= − −











===
∑∑∑ a

l l

ll

l

� �

  ,

where dτ2 is introduced for the system of N particles through Eq. 1. The sense of such
"nonequilibrium" time interval is the following. Here the mean deviation of the motion
characteristic of every part from the analogous total value appears. At nonequilibrium

conditions d pτ2 >0. At equilibrium when separated parts are approximately homogeneous

d pτ2  = 0. I.e. the value d pτ2  is related qualitatively with the Boltzmann H - function . It

seems that the searching relationships which are more complex than Eq. 1 is important.
Thoughts about "irreversible time" from 1) could be used and could be referred to
hypothetical "irreversible in time" equation (as e.g. the kinetic Boltzmann equation).
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3) On modeling of time equability (time congruence)
Based on intuitive considerations, Eq. 1 is capable to model the time equability.

Let us define more exactly why the averaging over the particles gives the possibility to
describe equable course of time.

The concept equability itself needs clarification. Reihenbach (1958) noted that, as
for spatial variables, for time it must used the idea of the so-called coordinate definition.
The question of comparison of two time intervals is the problem of a convention. One of
the possible independent definitions of time equability (time congruence) by Reihenbach is
given by mechanics laws. In this sense our time model satisfies the demand of such
convention.

The next definition of equability is given using clocks which can be dealt with the
problem of equability of ordinary clocks. As was mentioned above, it seems, that clock' s
pace has been improved over the course of long historical time, particular in the sense of
reaching greater equability. Time units defined by motion of the moon, the sun  and other
objects have been corrected permanently. The pace of real clocks has been established by
creating more precise (in certain sense) standards of time units. Working out of standard
clocks' pace has been taking place a long time by using some averaging in fact by
"experiments". It may be said that clocks' pace little by little has been arranged on a pace
of all world objects (by comparing "temporal" scales of systems and particles).

In the framework of present model these notions could be illustrated by the
following simple example. Let N particles in a system move independently, but realize the
same probable value. The realization of the probable value for "i" particle is d

�

r i , and in

accordance with the mentioned notation ηi i j
j

N

dr
N

dr= −










=
∑� �1

1

2

. The mean over

realizations tends to the expectation under the increasing of the number of realizations:
1

1
0n

M
n

nη η( ) ( )l

l=
→∞∑  →  .

Here n denotes the number of probable trials.   (Any probable value ηi denoted  as

η is considered.) In a given simplest example averaging over N probable values ηi can be

considered as averaging over a large number of realizations of the single probable value. If
it is possible to construct an instrument (a clock) which can be arranged on the average
pace of particles (in a given example on the average motion over realizations of the single
particle) then one can obtain the equable time course, i.e. always reproduce the value
M0(η). And one can model this averaging (over the large time interval) value by Eq. 1 at

a fixed moment of time. Indeed, with the notations of Section 4 we have

a
a a a2

0
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0
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( ) ( )η η η τ η τ= =








 = = =

= = =
∑ ∑ ∑  .

This equality is obeyed with accuracy  O(1 / N ).



19

Such considerations have a shortcoming because all operations have been made

with unnormalized values ηi the normalization denotes that we deal with appropriate
velocities; for these probable values one must write analogous expressions.

4) Properties of the model time
In conclusion let us consider some general properties of the time described on the

basis of proposed model of clock. This time is relational, dynamical, conventional and
universal. However, one can construct "internal time" for every system with the number of
particles less than the limiting one. The time is uninterrupted because thus far coordinates
of all particles are described in the classical manner, i.e. on the basis of continual space.
Since the time is determined through Eq. 1 it is one-dimensional. However more detailed
measures are acceptable. One can say that the model time as the characteristic of all
changes in the world is determined by all 3N coordinates, in other words, that time is 3N-
dimensional.

Let us note briefly the possibili ties of developing the model. One can propose
other mathematical forms of the time interval, in which, for instance, values of radius
vectors  differentials would be with weights dependent on distances between "the camera"
and particles. For arrangement of physical sense into such construction it needs to create a
new clock capable of taking the average motion of particles in accordance with the
formula for the time interval. Then the form of dynamics equations will be changed. Thus
the problem of generalization of the model could be realized by constructing new
instruments. More detailed description of reality would be achieved through obtaining the
new temporal characteristics of motion.
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