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PROPER-TIME CLASSICAL ELECTRODYNAMICS

We construct a generalization of Maxwell's equations associated with
the proper-time of the source which accounts for radiation reaction
without any assumptions concerning the nature of the source. The
theory leads to a new invariance group, related to the Lorentz group,
which leaves the proper-time of the source fixed for all observers.
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1. INTRODUCTION

It was observed in [1] that the use of time as a fourth coordinate (as
introduced by Minkowski [2]) in the special theory of relativity is a
third postulate, distinct from the first two:

(1) The physical laws of nature and the results of all experiments
are independent of the inertial frame of the observer.

(2) The speed of light (relative to all inertial observers) is con-
stant.
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This is, of course, independent of time being a fourth dimension.
As Minkowski was a well-known mathematician, this postu-

late was embraced by many. Others including Einstein, Lorentz, and
Poincare - regarded it as a mathematical abstraction lacking physical
content and maintained that space and time have distinct physical
properties. Although Einstein demurred, the feeling among many of
the other leading physicists at the time was that an alternate imple-
mentation should be possible which preserved some remnant of an
"absolute time" variable. The inability to obtain a viable alternative
forced acceptance of the current implementation.

By convention, the proper time used to describe physical sys-
tems is that of each observer. Since it changes from observer to
observer, it is not an invariant concept and there is no general way
to choose a fixed observer clock. Horwitz and Piron [6] solve this
problem by postulating a fifth (nonobservable) time evolution pa-
rameter which represents a universal (or historical) clock which is in
principle available to all observers. Fanchi defines a possible mea-
surement process for this variable at the quantum level (see his book
[16] and references therein).

In previous papers [1,3-4], we have constructed an alternate
implementation of the first two postulates of special relativity with-
out assuming that time be treated as a fourth coordinate (although it
can be). Our approach is based on the observation that we may use
the unique proper-time associated with the system of physical inter-
est in place of the observer proper-time. The use of such a variable
is not new and dates back to Tetrode and Fock (for a recent review
see Fanchi [5]). Our approach in [1] is close that of Horwitz and
Piron [6], but distinct in that the system proper-time is an observ-
able representing a possible clock available to all experimenters in
their frame of reference. As such, we treat the transformation from
observer proper-time to system proper-time as a canonical (contact)
transformation on extended phase space. This approach forces the
identification of the canonical Hamiltonian which generates the Lie
algebra (Poisson) bracket and thereby leads to a conceptually and
technically much simpler implementation of the special theory.

In this paper, we construct a direct representation of the
group associated with proper-time transformations between observers
for a given system. This allows us to construct a proper-time gen-
eralization of Maxwell's equations which has a new invariance group
leaving the proper-time of the source fixed for all observers. The new
group is closely related to, but distinct from, the Lorentz group. It
was shown in [1] that, in the free particle case, this group generates
a similarity transformation of the Poincare group by the canonical
proper-time group.

When we construct the associated wave equation, a damp-
ing term appears. This term is of the correct type and order of
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magnitude to account for the observed radiation reaction in classi-
cal electrodynamics. It occurs instantaneously with acceleration and
can be positive or negative depending on the forces. Our theory is
not invariant under time inversion, we thus lead to associate retarded
solutions with matter while advanced solutions are associated with
anti-matter. This leads to a natural arrow for (proper) time.

2. BACKGROUND

In order to make things transparent, we follow the original approach
of Einstein [7]. Let us consider two inertial observers X and X',
with X' moving along the positive x-axis with velocity v as seen by
X. Let a particle (the source of an electromagnetic field) also move
along the x- axes with velocity wx as seen by X and velocity w'x, as
seen by X'. We also assume that the (proper) clocks of X and X'
both begin when their origins coincide (Einstein synchronization). It
follows as in [7], that:

with Y(v) = [1 — u2/c2] -1/2, represent the Lorentz transformations
between our two observers X and X'.

The two observers X and X' can compute the proper-time for
the source in three ways. The first approach, due to Minkowski, is
well-known: j(w)dt = dr and y(w')dt' = dr. The second approach
(used in [1]) is based on the fact that the Hamiltonians

so that

In the third case, we use

where ux = dx/dr is the (proper) velocity of the source as seen by
X and u'x, = dx ' /d t is the source velocity as seen in the X' system.
This relationship is easy to derive using
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The energy functional K conjugate to the proper-time r must there-
fore satisfy

In the free-particle case, H = [m2c4 +c2p2]1/2, and since m remains
invariant during the dynamics, the form of the functional K can be
directly determined from

where a, a' are arbtrary constants. In the zero - momentum frame
(p = 0), we have H = mc2, so that K = mc2 (from {K, W} =
H/mc2{H, W}). It follows that a = a' and

Next, using dt = H/mc2dT, the time evolution of the function W is
given by the chain rule

so that

3. PARTICLE DYNAMICS

For the dynamics of any classical observable W associated with the
particle, the Poisson bracket defines Hamilton's equations in the X
frame by

and, solving for w in terms of u,
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In [1], we showed that the above considerations generate a similarity
action on the Poincare group and thus proves that the laws of physics
will be the same for all observers. In the many-particle case, we
proved the following results in [4]:

Theorem 1. There exists a unique observable clock for the
time-evolution of any closed interacting relativistic system.

Theorem 2. There is a many - particle direct - interaction
theory with the following properties:

1. The theory satisfies the first two postulates of special relativ-
ity.

2. The theory is based on Hamiltonian dynamics.
3. The theory is based on independent (canonical) particle vari-

ables.

It is known that replacement of the first condition with the require-
ment of Lorentz invariance is only compatible with noninteracting
particles. This is the content of the no-interaction theorem (see [1]
and references therein).

4. TIME REVERSAL NONINVARIANCE

Since dr = (mc2/H)dt, K = [H2/2mc2 + mc2/2], and m are always
positive, we see that, if t —> — t (time reversal) or H —> — H, then
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In a similar manner, the observer in X' will obtain

This physically intuitive approach provides insight but is far from
rigorous. In fact, the above approach does not insure that we have
a canonical transformation of variables. It is easy to check that:

where dS = (l/2)(mc2 — H2/mc2)dr, so that the above transfor-
mation is canonical. The general solution to the problem is solved
by:



K —> K is invariant, while T —> —r. Thus our theory is noninvariant
under time reversal at the classical level and since T is monotonically
increasing, we acquire an arrow for (proper) time. It is thus natural
to interpret anti-matter as matter with it's proper time reversed.
A complete discussion requires the introduction of Santilli's isodual
numbers [15], in which the unit 1 is replaced by —1 and ab -» a *
b = —ab so that (—1)* (—1) = —1. This allows for a completely
symmetric theory of matter (and numbers ) which avoids all of the
objections to hole theory, while maintaining consistency with our
physical sense of a monotonically increasing of time variable. We will
discuss this completely as a part of our approach to the foundations
of relativistic quantum theory. The arrow of historical time has been
discussed extensively by Fanchi in his book [16] ( see also [17]) and
by Horwitz, et al.[18].

Both Feynman [8] and Stueckelberg [9] introduced the notion
of representing anti-matter as matter with its time reversed. Our
final conclusion is the same as theirs however, the two approaches
are distinct. In our approach, we replace t by T and aquire K as its
cannonical Hamiltonian, so that T becomes both our coordinate time
and evolution parameter. In their approach, they retain t and H and
introduce T as an evolution parameter. This allows them let d/dr
maintain the role of a Lorentz invariant (operator-valued) quantity.
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5. PROPER-TIME TRANSFORMATION

In order to construct an explicit representation for the above trans-
formation, we use our third representation for the proper time. Let
us return to (1) and note that w and w' are related to u and u' by

From

we have



where a(a') is the particle proper (-three) acceleration.
It should also be noted that, by the mean value property for

integrals, we can find a unique s(r) for each T, with 0 < s(r) < r
such that UT = U(T — s ( t ) and A(u) = S(uT). It is clear that
this property is observer independent since t' = Y(u)[< — (vx)/c2] =»•
A(u') = [A(u) - (vx)/c2].

If another observer is also present, then using x" = Y(u')(a:' —
u'A(u')r) and (15), we easily obtain:

our transformations between observers become:

It follows that t (or t') is nonlocal as a function of r in the sense that
the value depends on the particular physical history (proper time
path) of the source. Setting

In the general case, w is not constant, so that

If w is constant, then u is constant and we get, from (4) and (13),
t = 8(u)r and t' = S(u ' )T , so that
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It follows that we get the same (Lorentz) velocity addition law for
(inertial) observers:



6. PROPER-TIME MAXWELL EQUATIONS

From (3) and (15), it is easy to see that:
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If we set b2 = (u2 + c2), then we have 1/cdt = 1/bdr and 1 / cd f =
1/bdr.

Let us now consider Maxwell's equations as seen from X for
the field at the source. We assume that the current density J can
be written as cJ = pvt. Using (13), (15) and (20), these equations
can be written as (generalized to depend on the proper-time of the
source):

Following the same calculations as in Einstein [7], we find
that:

which lead to:

It follows that Maxwell's equations are invariant under the
transformations (15). We see that the velocity of electromagnetic
waves with respect to r depends on the motion of the source, and



so there is no mass increase, the (proper) velocity increases. This
implies that in particle lifetime measurements, the particle will have
a fixed mass and fixed decay constant, independent of it's velocity.
On the other hand, the particle can have speeds larger than the speed
of light since it's velocity will be dx/dr. In all cases where a length
contraction or a time dilation is required in the standard approach,
our approach leads to a statement about u.

Note that, from [1 + u2/c2]1/2 = [1 - w2/c2]-1/2, we have

Thus, these two expressions agree in the low-velocity region, to make
things even more difficult, it follows from w = u[1 + u2 /c2] - 1 / 2 that

their magnitude is always larger than c. This observation may seem
strange and even contradictory to the second postulate, but it is not.
On closer inspection, we realize that the second postulate refers to
the observer's point of view using measuring rods and clocks. Thus,
there is no contradiction.

In the Michelson-Morley experiment, the source is at rest in
the frame of the observer so that u = 0 and b = c. It follows that our
approach explains the Michelson-Morley null result. It also provides
agreement with the conceptual (but not technical) framework pro-
posed by Ritz [10], namely, that the speed of light does not depend
on the (proper) motion of the source. In this sense, both Einstein
and Ritz are correct.

At the time of Einstein there was no reason to believe that
the system would not necessarily unfold as the observer sees it. The
real physical question that arises is: Which velocity is most useful in
understanding physical systems? This is not an easy question since
every known experiment which confirms the standard implementa-
tion can also be used to confirm the present approach. For example,
the relativistic momentum increase is attributed to relativistic mass
increase so that
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In our interpretation, we get



so that all the results derived form the standard implementation of
special relativity using w/c can also be consistently derived using
u/b.

7. PROPER-TIME WAVE EQUATION

Returning to (21), we perform the standard manipulations, using

and

Imposing the (proper-time) Lorentz gauge

we get the wave equations

We get a similar equation for A.
The dissipative term is zero if u is constant and arises instan-

taneously with acceleration. This is what we expect of a radiation
reaction term (see Wheeler and Feynman [11]). It is also of interest
to observe that we have made no assumptions about the structure
of the source.

Straightforward calculations lead to an equation of the form
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In order to solve (33), the simplest assumption is that a2 =
—1/b2[u- du/dr] and 1/b2 may be treated as constants. We can then
solve the equation

If R = |r — r0| and t = r — T0, the standard solution ([12], p. 868) is

where, setting h(R,t) = (t2 - R2/b2)1/2,

with

representing the step function, and I\ is a modified Bessel function,
I 1 ( x ) = —iJ 1 ( i x ) . We have taken the retarded solution because
it is associated with the particle (moving forward in proper time).
Assuming p(r0,r0) = qS(r0), we find

where



Note that, if we let p(r0, r0) = qS(r0 — ur0), then 1/r becomes
1/s, where s = r — (r.u)/b and the exponential term becomes a
complicated function of r, r0, r and u.

The exponential term in (37a) can be both positive and neg-
ative. On the average, its value will be zero and we reproduce the
standard radiation rate. A better approach is to set $ = (b/c)1/2A,
so that we solve:

where as before, t = T — T0. We can now compute A from

558 Gill el al.

We now assume that b/2b3 — 5b2/4b4 and 1/b2 may be approxi-

mately treated as constants. This gives g(R,t) = g 1 ( R , t ) + g 2 ( R , t ) ,
where

It is now clear that (39a) will reproduce the standard radiation rate.
Assuming that p(r0,T0) = qS(r0 — ur0), we get

with



It is now clear that the special theory of relativity can also be formu-
lated in Euclidean space provided we standardize time and velocity
using the proper time and proper velocity of the source for all ob-
servers.

As is to be expected, our group (Eq. 15) is very close to the
Lorentz group in that it is equivalent (but not identical) if the source
has constant velocity. This is easy to see since then, the source is
just another inertial frame. Note that there is no "geometrical time"
in our formulation, T replaces t as one of the physical observables
defining the state of the system, so that even when the source has
constant velocity, the physical interpretation is different.

When the source is accelerating, the group generators are non-
local. This means that the transformation theory is quite distinct
from that of the theories based on the use of historical time. We
will discuss the details of the group and it's Lie algebra in a separate
publication.

The fact that w/c = u/b and 1/cdt = 1 /bd T , has some very
interesting implications for all areas where classical electrodynamics
is used. In each case, using the above two facts, we can construct
a dual theory that is mathematically equivalent but which requires
a completely different physical interpretation. For example, all the
formula related to the Doppler effect (giving the apparent frequency
of a moving light source) may be formulated as above and will give
the same numerical values. This creates an interesting dilemma for
cosmologists, since in the dual interpretation, the source can move
faster than the speed of light compared to the observer. Let us
consider another example which goes to the heart of the issue. In
the standard approach, the Lorentz force can be written as
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8. DISCUSSION

To see our formulation in a different light, note that the Minkowski
approach gives

We can also write this as
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Using w/c = u/b, 1/cdt — 1/&dr, it is easy to see that this same
equation can be written as

These two equations are mathematically identical however, they are
physically different and have different interpretations. The second
equation is nonlinear in u (because of the b terms). It represents
the force a local observer would obtain using his phase space and
the proper clock of the particle via a canonical transformation of
variables. This second equation will be derived in a different way
from a theory in which the region in the immediate neighborhood of
the particle is distorted (curved) because of the interaction.

It is clear that, in general, equation (33) cannot be solved
so that some simplifying assumptions are required. When a2 = 0,
we see from (35a) that our result will lead to the standard Lienard-
Wiechert potentials and hence, produces the standard radiation rates.
It is not difficult to show that under fairly general conditions, |a2|
will always be small compared to unity and that a2 can be positive or
negative. It should also be noted that (35a) is Coulomb/Yukawa-like,
with a2/2b acting as an effective mass. This term is a consequence of
the fact that our wave equation now has both a wave and a diffusion
component. The second term represents the wake associated with
the point source acceleration. For b(r — r0) » r, this term yields the
diffusion approximation and looks like a Gaussian pulse.

In (39c) we can also write M2 as

and it is now clear that the second term is the only one that can
change sign. The first is always positive while the last is always
negative. In the synchrotron case, the last term is zero. When m2

is positive we have a Klein-Gordon type equation. This has some
interesting possibilities for the study of the electromagnetic mass,
electron self-energy and stability in the classical case. In particu-
lar, since we are only interested in retarded solutions and Maxwell's
equations are first order (in time), we should be looking for a first
order equation that gives the retarded solutions directly. In our case,
this leads to



To the writer's knowledge, there is no published analytical solution
to this equation in the literature. Such a solution would also be of
interest for the foundations of relativistic quantum mechanics.

9. CONCLUSION

We have constructed a direct implementation of the first two postu-
lates of the special theory of relativity without assuming that time
be treated as a fourth coordinate. We obtain a different transforma-
tion theory which fixes the proper time of the source for all observers.
This leads to a generalization of Maxwell's equations and a new wave
equation which depends on the motion of the source. It is shown that
the speed of light with respect to proper time will depend on the mo-
tion of the source as suggested by Ritz and is not in contradiction
with the second postulate. Our wave equation is solved using two
different approximation assumptions. Each approach allows us to
recover the standard theory, but also gives an additional term which
is interpreted as a wake or shock wave caused by the particle ac-
celeration. This is equivalent to a damping term which is of both
the type and order of magnitude to directly account for radiation
reaction without any assumption about the structure of the source.

Our approach is motivated by the observation (of Feynman)
that time is both a physical quantity and an index which identifies the
order of physical events. The successful construction of the Feynman
time-ordered operator calculus [13], its intuitive physical content and
our ability to use it to prove the Dyson conjecture [14], convinced us
that the use of time as a fourth coordinate may well be a major cause
of problems in the merging of relativity with quantum mechanics.
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