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1. Introduction. Pure algebra as the key to physical interactions?

Origins of the experimentally observable (and extremely intricated!) structure of

fundamental interactions, of their laws, intensities and scale dependence still look as

an enigma. It might seem that cardinal solution to this eternal problem is hidden in

the geometry of physical space-time. However, the Minkowski geometry is too “soft”

and allows for a wide variety of relativistic invariant interactions, if even the gauge

invariance of the scheme is required. As to various geometries of extended space-time,

at present they seem quite indefinite by themselves and, moreover, do not predetermine

in any way a distinguished structure of physical dynamics.

That is why, from time to time, one can meet articles dealing with the most

profound, elementary notions of physics and reformulations of these on the basis of

geometry, algebra, number theory etc. We are aware that such attempts had been

undertaken, say, by P.A.M. Dirac, A. Eddington and J.A. Wheeler.

Particularly, one of the most beautiful and striking ideas was the Wheeler-

Feynman’s conjecture on “one-electron Universe”. This conjecture based on the notion

of a set of particles located on a single Worldline easily explains the property of

identity of elementary particles of one kind, the processes of annihilation/creation of a

pair of “particle-antiparticle” (in which one treats a “positron” as an “electron” running

backwards in time [1]) etc.

In his Nobel lecture [2], one of the creators of QED R.P. Feynman confessed that his

true goal was the establishment of correlations of an ensemble of identical (pointlike or

smeared, to avoid field divergences) particles on a single Worldline through their along-

light-cone interactions and on the base of a unique Lagrange function. Unfortunately,

the “one-electron Universe” paradigm had not been fully realized; the reasons for this

will be revealed below.

In fact, this paradigm gains natural development in the framework of complex

algebrodynamics [3, 4, 5]. In this approach one attempts to derive both the space-

time geometry and principal dynamical equations for fields and particles from the

properties of an exceptional algebraic structure, a sort of space-time algebra. Contrary to

geometries, one possesses quite definite and transparent classification of such exceptional
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linear algebras based on the famous theorems of G. Frobenius and A. Hurvitz. For

consistency with the STR and the Minkowski geometry, most often as such strucure it

had been considered the algebra Q of complex quaternions [5, 6, 7].

Specifically, in the complex extension of space-time CM – vector space of Q – the

dynamics, even on a single Worldline, becomes quite nontrivial. Contrary to the case

of real Minkowski space-time M, under any position and movement of an “observer”,

the equation of complex light cone – direct generalization of the retardation equation

in M – always have a constant and, generally, great number of roots. These define a

correspondent number of copies of one and the same particle detected by the observer

at their different positions on a single Worldline; in [8] these copies have been named

“duplicons”.

In the framework of another approach, one considers a single Worldline in real M

but allows for superluminar velocities of particles (tachyons) along it. In this case, the

observer also encounters an arbitrary number of copies of one and the same tachyon.

Possible existence of such copies-“images” had been noticed in [9] and examined in

detail in [10]. Note that, contrary to the situation with duplicons in CM, the number

of such images is not generally constant: some two of these can appear or disappear at

discrete instants so that one has a simple model of the creation/annihilation process.

s = s1

s = s2

s = s3

space

time

Figure 1: Generic worldline, numerous

pointlike “particles” (at s = s2) and creation

(at s = s1) or annihilation (at s = s3) events

It should be noted that the Wheeler-

Feynman’s conjecture on the “one-

electron Universe” and, especially, on

“positron as a moving backwards in time

electron” had been explicitly initiated

by pioneer works of E.C.G. Stueckel-

berg [11, 12]. He assumed the exis-

tence of worldlines of general type (for-

bidden in the canonical STR) that con-

tain the segments corresponding to su-

perluminar velocities of particles’ move-

ments (figure 1). Then, corresponding

(hyper)plane of equal values of the time-

like coordinate s = s2 intersects a worldline in a (generally, great) number of points.

Physically, these form an ensemble of identical particles located on a single Worldline.

If, in the course of time, the coordinate s is assumed to increase monotonically, some

two particles can appear at a particular instant s = s1 (or disappear at s = s3). These

events model the processes of creation (annihilation) of a pair “particle-antiparticle”.

Most likely, Stueckelberg [11] himself considered s as a fourth coordinate and does

not assume it to be a (global) evolution parameter. As to the latter, he introduced a

timelike parameter λ monotonically increasing along the trajectory and proportional to

the proper time of a particle. After this, all equations of the theory can be formally

represented in a relativistic invariant form. On the other hand, segments of the

trajectory correspondent to opposite increments of s and λ, namely, to ds/dλ < 0
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were regarded as representing the backwards-in-time motion of an antiparticle.

However, λ-parametrization is in fact parametrization for the history of individual

particle which comes in conflict with the concept of “one-electron Universe”. In order to

preserve the ensemble of identical particles on a unique worldline, one should consider

just s as the “true” time. Then, however, velocities of “particles” should be also

measured with respect to the parameter s and are necessarily superluminar at some

segments of their history (and even infinite at the annihilation points, see below).

Stueckelberg himself fully comprehended this difficulty and wrote, in particular: “Ceci,

et d’autres considérations d’ordre causal, nous semble être in argument important contre

l’hypothése de l’existence de telles forces, malgré la covariance de leur représentation”

[11, p. 592].

Subsequently, numerous approaches exploiting Stueckelberg’s ideas (including his

specific interpretation of the wave function, action functional and Lagrangian etc.) came

to be known as parametrized relativistic theories (see, e.g., the review [13] and references

therein). In most part of them, the additional timelike parameter had been treated as

a Lorentz invariant evolution parameter or even as absolute Newtonian time [14, 15] ‡.
Nonetheless, ultimate physical meaning of the variable s is still unclear. Pavsic [17] even

considered it as “evolution parameter that marks an observer’s subjective experience of

now” and tried to relate this to the process of localization of a particle’s wave packet

(to the collapse of wave function). One way or another, multiple “particles” on a single

worldline related to one and the same value of s, are not causally connected and cannot

be simultaneously detected by an observer.

These and similar considerations reveal a lot of problems which arise under one’s

attempts to realize the “one-electron Universe” conjecture. However, the Stueckelberg-

Wheeler-Feynman idea is too attractive to be abandoned at once. In account of the

above mentioned Galilei-invariance of Stueckelberg’s construction, at the first step it

seems quite natural to consider a purely non-relativistic, three dimensional picture of

processes represented at figure 1 §. The Galilean-Newtonian picture is just that

we accept in the main part of the article and that allows for a self-consistent

realization of the “one-electron Universe” conjecture.

Specifically, our main goal throughout the paper is to obtain correlated dynamics

of identical pointlike particles from purely algebraic properties of a single Worldline [18]

and without any resort to the Lagrangian structure. In this point our approach is

quite different and much more radical that those of Stueckelberg and Wheeler-Feynman.

In the paper, instead of definition of a worldline in a habitual parametrical form

(and in simplest parametrization x0 = s)

xa = fa(s) (a = 1, 2, 3), (1)

we define it (what is widely accepted for curves in mathematics) in an implicit form, i.e.

‡ Remarkably, in Ref. [16] invariance of Stueckelberg’s action with respect to the Galilei transformations

had been proved
§ Despite the generally accepted conviction about close connection of the annihilation/creation

processes with relativistic structures
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through a system of three algebraic equations

Fa(x1, x2, x3, s) = 0. (2)

Then again, for any value of the timelike coordinate s, one generally has a whole

set (N) of real roots of this system, which define a correlated kinematics xa = f
(k)
a (s) of

the ensemble of identical pointlike singularities on a unique Worldline ‖.
It is noteworthy that the copies arising via this algorithm (a la Stueckelberg) exist

by themselves. Their appearance is not related á priori to the existence of an “observer”

or to the procedure of “registration”. Thus, these identical particlelike formations do

no have direct connection either with the concept of duplicons, or with the “charges-

images” of Bolotovskii [10] mentioned above.

Multiple properties and “events” related to particlelike formations defined by the

roots of the system (2) are considered in Section 2 and illustrated therein by a rather

simple example. We restrict ourselves to plane motion and to polynomial form of two

generating functions in (2). Particularly, we take into account not only real roots but

complex conjugate roots as well: the latter turn to have independent physical sense and

correspond to another kind of particlelike formations.

In the key Section 3 a short excursus into the methods of mathematical investigation

of the solutions of system (2) (in the 2D case) of a generic polynomial type is undertaken.

In the main, these methods make use of the so called resultants of two polynomials. After

that, we demonstrate that the Vieta’s formulas well known for a single polynomial

equation, naturally arise in the 2D case too. Quite remarkably, they not only ensure the

correlations between positions and dynamics of different particles in the ensemble but

reproduce in fact generic structure of Newtonian mechanics and, in particular, lead to

satisfaction of the law of momentum conservation (in the special inertial-like “reference

frames”)!

In the next Section 4, we outline some possible ways to appropriate relativization

of the theory. In particular, we discuss the problem and possible advantages of the

introduction of an external “observer” into the scheme. Alternatively, we try to define

the “second time” parameter in the spirit of old conjecture of F. Klein et al. about

universal lightlike velocity of all the matter pre-elements in the extended physical space

(4D in our case). This can be treated as a reformulation of the STR and could make

the structure of the principle system (2) consistent with relativistic mechanics.

Section 5 contains some concluding remarks on motivations and actual

developments of the presented scheme. As an important part, the article contains also

the Appendix. Therein, a surprisingly rich dynamics defined by a simple polynomial

system presented in Section 2 is traced in detail, with the help of numerous graphical

representations. One can also see an impressve animation of the dynamics with the help

of the file enclosed to the paper.

‖ At least in simplest parametrization (1), equations for a worldline contain no trace of relativistic

structure. One is thus allowed to preserve the relativistic term “worldline” in the considered Galilean-

Newtonian picture
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2. Two kinds of pointlike particles: algebraic kinematics

Consider for simplicity the case of plane motion ¶ and a curve defined implicitly through

a system of two independent polynomial equations with real coefficients

F1(x1, x2, s) = 0, F2(x1, x2, s) = 0, (3)

where s ∈ R is the particular coordinate which, in addition, plays the role of evolution

parameter: its variations will be assumed monotonic. As it was argued in the

Introduction, one can think on s as on a Newtonian-like absolute global time.

We consider system (3) as the only one whose properties we shall study throughout

the paper: we do not intend to supplement it by any additional equation or statement

of physical or mathematical nature which does not explicitly follow from (3).

For any s, system (3) generally has a finite (N) number of roots {xk1, xk2}, k =

1, 2, ...N . These define the positions of N identical pointlike particles at the instant s

on a 2D trajectory curve

F (x1, x2) = 0, (4)

whose form can be obtained from (3) after eliminaion of s and which, generally, consists

of a number of disconnected (on R2) components. With monotonic growth of the time

s, particles move along the trajectory curve with arbitrary velocities, and their number

is (almost always) preserved.

However, at particular discrete instants s, say, at s = s0, some two of the real roots

of (3) turn into one multiple root and then become a pair of complex conjugate roots.

Consequently, corresponding pair of particles merge (collide) at s = s0 at some point

{x01, x02} and then disappear from the real slice of space. Such an “event” can serve as a

model of the annihilation process. Conversely, at another instant some two of real roots

can appear modelling the process of pair creation.

It should be noted nevertheless that one cannot ignore the formations which

correspond to complex conjugate roots of (3) and “live” in the complex extension of

real space. This fact will become evident in the next section while at the moment we

only remark that such formations can be depicted with respect to equal real parts of

their coordinates.

From this viewpoint, a pair of complex conjugate roots corresponds to a composite

particle consisted of two parts coinciding on R2 but possessing opposite additional

“tails” represented by imaginary parts of coordinates. For brevity, we shall call

particlelike formations represented by real roots of the system (3) R-particles, by

complex conjugate pair of roots – C-particles.

Condition for annihilation/creation events can be easily specified as that for multiple

roots of system (3) and has the form

det ‖∂FA

∂xB
‖ = 0, A,B, ... = 1, 2. (5)

¶ We suspect that generalization to the physical 3D case will only be technically more complicated but

none problems of principal character will arise during it
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Together with (3), condition (5) defines a complete set of instants (and space locations)

indicating when (and where) such events do occure.

It is now the time to present a simple example of the issues exposed above. Let us

take the functions F1, F2 in (3), say, in the following (randomly selected) form:{
F1(x, y, s) = −2x3 + y3 + sx+ sy + y + 2 = 0,

F2(x, y, s) = −x3 − 2x2y + s+ 3 = 0
(6)

Eliminating s, one gets the trajectory (on the real space slice) which

turns to consist of three disconnected components (figure 2). Then via

elimination of y one reduces system (6) to a single polynomial equation

P (x, s) = 0 of the degree N = 9 in x and with coefficients depending

on s. The latter evidently allows for full analysis and numerical calculations.
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Figure 2: Three braches of the trajectory of

R-particles and typical succession of events

(annihilation - propagation of C-“quantum”

- creation)

As the result, one gets that, for any

s, there exist 9 solutions of the system

some of them being real while others

– complex conjugate. Analyzing condi-

tion (5) (or, equivalently, the structure of

discriminant of the polynomial P (x, s))

one concludes that there are exactly 6

“events” which correspond to the follow-

ing (approximate) values of the global

time s: −97.3689; −4.0246; −3; −2.7784;

−2.7669; +2932.49. Some of these relate

to annihilation (merging) events whereas

others – to creations of a pair. In the

Appendix Iand in the animation file

enclosed) one can find many details

of the, surprisingly rich, dynamics in-

cluding processes of annihilation of two R-

particles accompanied by birth of ae com-

posite C-particle and vice versa. One ob-

serves also that the created C-“quantum” travels between two disconnected branches

of the real trajectory, arrives at the second branch and gives there rise to a divergent

pair of real R-particles (creation of a pair), see also figure 2. Remarkably, this strongly

resembles the process of exchange of quanta specific for QFT.

Two peculiar aspects of the considered algebraic dynamics can be observed. The

first one is the surprisingly great “last” critical value of the time parameter s ≈ 2932.49,

despite of the numerical coefficients in (6) which all are of order 1. Thus, the “history

of a Universe” defined via (6) turns to be unexpectedly long! It is not yet clear whether

this property is of a particular or generic nature.

The second aspect relates to impossibility to establish a unique parametrization

xA = xA(λ), λ ∈ R on all the three disconnected components of the trajectory. Here λ is
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a parameter monotonically increasing along the trajectory and exploited, in particular,

by Stueckelberg himself. From this impossibility it follows that distinction of particles

from antiparticles (say, “electrons” (ds/dλ > 0) from “positrons” (ds/dλ < 0)) can

be established quite independently on each branch of the trajectory. One can speculate

whether this fact could be useful in explanation of the particle/antiparticle asymmetry.

To conclude, let us obtain the expression for velocities of individual particles with

respect to the global time s. Introducing canonical parametrization for an individual

R-particle as xA = xA(s) and taking then the total derivative with respect to s (denoted

by a “dot”) in (3) one gets

0 = ḞA +
∂FA

∂xB
ẋB, (7)

whence it follows

ẋC = −RA
CḞA, (8)

where RA
C is the inverse matrix,

RA
C

∂FA

∂xB
= δBC . (9)

Comparing (8) with condition (5), one concludes that at the instants of

annihilation/creation velocities of both particles involved in the process are necessarily

infinite +. In the framework of Galilean-Newtonian picture assumed throughout the

paper, this property cannot cause any objection. Nonetheless, quite similar to the

Stueckelberg’s approach, at this point one encounters severe problems with causality

and other principal statements of the STR. We consider these problems in Section 4.

3. Vieta’s formulas and the law of momentum conservation

Let us concentrate first upon the procedure of resolution of the system of polynomial

equations (3) of generic type (below we have made obvious renotations x1 7→ x, x2 7→ y),{
F1(x, y, s) = [an,0(s)x

n + an−1,1(s)x
n−1y + ...+ a0,n(s)yn] + ...+ a0,0(s) = 0,

F2(x, y, s) = [bm,0(s)x
m + bm−1,1(s)x

m−1y + ...+ b0,m(s)ym] + ...+ b0,0(s) = 0.
(10)

Only forms of the highest (n and m, respectively) and the least orders are written out

in (10). Both polynomials are assumed to be functionally independent and irreducible,

while all the coefficients {ai,j(s), bi,j(s)} depend on the evolution parameter s and take

values in the field of real numbers R.

Rather surprisingly, not so much facts are known about properties of solutions of

a nonlinear system of polynomial equations. Of course, some results can be taken from

those for the one dimensional case. For example, it is easy to demonstrate that all the

roots {x0, y0} of such a system are either real (x0 and y0 both together) or both entering

as complex conjugate pairs. However, even the problem of explicit determination of

the full number of solutions of (10) over C from, say, the properties of coefficients and

+ This can be also seen just from figure 1, since at such instants one obviously has ds = 0, dxA 6= 0
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degrees of the polynomials F1, F2 is far from being completely resolved (contrary to the

one dimensional case) [19].

In practical calculations, however, it is quite possible to determine this number and

evaluate approximately all the roots of (10), both real and complex conjugate. For this,

the most convenient method is perhaps the method of resultants [19, 20]. Precisely, let

{x0, y0} be a solution to (10); then for y = y0 being fixed both equations in (10) on x

should have a common root x = x0. Necessary and sufficient condition for this is well

known:

Rx(y) = gN(s)yN + gN−1(s)y
N−1 + ...+ g0(s) = 0 (11)

where R[F1(x), F2(x), x] ≡ Rx(y) is the resultant of two polynomials F1, F2 via x taken

at the condition y = y0 (for simplicity the index 0 is omitted in (11) and below).

Structure of the resultant (which in this case is often called eliminant) is represented by

the determinant of Sylvester matrix (see, e.g., [20, 21]). Coefficients {gI(s)} depend on

{ai,j(s), bi,j(s)}.
Analogously, one can exchange the coordinates, and after elimination of y arrive at

the dual condition

Ry(x) = fK(s)xK + fK−1(s)x
K−1 + ...+ f0(s) = 0. (12)

When the coefficients an,0, a0,n, bm,0, b0,m are all nonzero, the leading terms in (11)

and (12), as a rule, ∗ are of equal degree K = N = mn (see, e.g., [22, 23, 24]).

Then all their (N = mn) solutions over C can be numericallly evaluated and put in

correspondence with each other to obtain N solutions {xk(s), yk(s)}, k = 1, 2, ..N of

the initial system (10). If some of the above 4 coefficients turn to zero, the number of

solutions can be less then the maximal possible value mn. Nonetheless, in this case all

the solutions still can be (approximately) obtained with the help of a computational

software program Maple or Mathematica.

In order to illustrate the above presented procedure, consider the following system

of equations (closely related to the previous one (6), see Section 3 below):
F1 = −2x3 + y3 + 6s2x2 + 3sy2 − (6s4 − s)x+ (1 + s+ 3s2)y+

2s6 + s2 + s+ 2 = 0,

F2 = −x3 − 2x2y + (3s2 − 2s)x2 + 4s2xy − (3s4 − 4s3)x− 2s4y+

s6 − 2s5 + s+ 3 = 0.

(13)

Using the computer algebra system “Mathematica 8”, we easily find the eliminant Rx(y)

and come to the equation

Rx(y) = 17y9 + 153sy8 + ... = 0. (14)

Analogously, we get the dual condition

Ry(x) = −17x9 + 153s2x8 + ... = 0. (15)

∗ Precisely, if the numerical coefficient given by any of equal resultants R[Fn
1 (1, y), Fm

2 (1, y), y] ≡
R[Fn

1 (x, 1), Fm
2 (x, 1), x] is nonzero, Fn

1 and Fm
2 being forms of the highest degrees (n and m,

respectively), in (10)



Algebraic roots of Newtonian mechanics 9

The sets of 9 solutions of equations (14) and (15) can be now obtained and put in

one-to-one correspondence to each other to give 9 solutions of the system (13). For

example, at s = 1 the system has one real solution {x ≈ 2.3079, y ≈ −0.4848} (defining

the position of one R-particle) and 4 pairs of complex conjugate roots (corresponding

to four C-particles).

We are now ready to consider the most important issue of the present

publication, namely, the correlations of different roots and the related particles’

dynamics. These correlations follow just from the Vieta’s formulas for equations on

eliminants (11),(12) ]. The first and simplest of the Vieta’s formulas (linear in roots)

looks as follows:{
NX(s) := x1(s) + x2(s) + ...xN(s) = −fN−1(s)/fN(s),

NY (s) := y1(s) + y2(s) + ...yN(s) = −gN−1(s)/gN(s).
(16)

Obviously, quantities {X(s), Y (s)} can be regarded as coordinates of the center

of mass of the closed system of N identical (and, therefore, of equal masses) pointlike

particles with coordinates represented by the roots {xk(s), yk(s)}, k = 1, 2, ..N of the

system (10) and varying in time s.

An important fact here is that complex conjugate roots also enter the l.h.p. of

the condition (16) though their imaginary parts cancel and do not contribute to the

center of mass coordinates. This observation makes it obvious that such roots cannot

be regarded as “unphysical”; on the contrary, they should be treated as a second type

of particlelike formations (C-particles) which “appear/disappear” in the processes

of creation/annihilation of real R-particles and “move” in the space between the

components of the trajectory of the latter. Only real parts of these complex conjugate

roots contribute to the center of mass coordinates (and to total momentum, see below)

and can be visualized in the physical space. We have exemplified such a visualization in

the previous section. As to imaginary parts of such roots, they could be responsible for

internal phases and corresponding frequencies of C-particles [6, 27]; however, their true

meaning is vague at the present stage of consideration. Notice also that effective mass

of a C-particle is in fact twice greater than that of an R-particle since any C-particle is

represented by a pair of complex conjugate roots (and thus by their equal real parts on

the physical space slice).

R.h.p. of equations (16) indicate that, generally, the center of mass of such closed

“mechanical” system does not, generally, move uniformly and rectilinearly. However,

one can treat this fact as a manifestation of non-inertial nature of the reference frame

being choosed. Thus, one has the right to execute a coordinate transformation to another

frame which would model the inertial properties of matter (recall that we deal only with

a single “Worldline” representing “all the particles in the Universe”).

In fact, it is easier to find just the distinguished reference frame in which center of

mass is at rest. To do this, let us return back to the eliminants (11),(12) and get rid of

] Below we consider the generic case when the degrees of both eliminants are equal, K = N



Algebraic roots of Newtonian mechanics 10

the terms of the (N − 1)-th degree, setting

x = x̃− (N − 1)fN−1(s)/fN(s), y = ỹ − (N − 1)gN−1(s)/gN(s). (17)

Now one can rewrite system (10) in the new variables as

F̃1(x̃, ỹ, s) = 0, F̃2(x̃, ỹ, s) = 0 (18)

and consider it as describing the same closed “mechanical” system of N particles in the

center of mass reference frame. Indeed, equations on eliminants (11),(12) in the new

variables take the form

R̃y(x̄) = fN(s)x̃N + 0 + ...+ f̃0(s) = 0, R̃x(ȳ) = gN(s)ỹN + 0 + ...+ g̃0(s) = 0 (19)

and, according to the Vieta’s formulas (16), one gets

NX̃(s) := x̃1(s) + x̃2(s) + ..x̃N(s) = 0, NỸ (s) := ỹ1(s) + ỹ2(s) + ...ỹN(s) = 0. (20)

Differentiating then (20) with respect to the evolution parameter s one obtains the

law of conservation of the projections Px, Py of total momentum for a closed system of

identical “interacting” particles defined by equations (18):

Px := ẋ1(s) + ẋ2(s) + ...+ ẋN(s) = 0, Py := ẏ1(s) + ẏ2(s) + ...+ ẏN(s) = 0 (21)

(the sign “tilde” is omitted for simplicity).

If necessary, one can now transfer to another inertial reference frame using a

Galilei transformation, say, y 7→ y, x 7→ x − V s, V = constant in which the

center of mass moves uniformly and rectilinearly with velocity V ; specifically, one gets

X(s) = V s, Y (s) = 0.

Repeating now the procedure of differentiation, one obtains from (21) a universal

constraint on instantaneous accelerations of interacting identical particles:

ẍ1(s) + ẍ2(s) + ...ẍN(s) = 0, ÿ1(s) + ÿ2(s) + ...ÿN(s) = 0, (22)

which, for simplest case of a system of two particles, gives the third Newton’s law

together with definition of the forces of mutual interaction (provided the equal masses

are set unit, m1 = m2 = 1):

f (21)
x = m1a

(1)
x = ẍ1, f

(12)
x = m2a

(2)
x = ẍ2, f

(21)
y = m1a

(1)
y = ÿ1, f

(12)
y = m2a

(2)
y = ÿ2; (23)

a(1)x (s) + a(2)x (s) = f (21)
x + f (12)

x ≡ 0, a(1)y (s) + a(2)y (s) = f (21)
y + f (12)

y ≡ 0. (24)

Essentially, for two particles the whole system of Newton’s mechanics may be

completely recovered (though the concrete form of the forces’ laws themselves is not

fixed by the equation of the Wordline (18)).

Consider now the case of 3 particles constituting a closed mechanical system. Then

in order to resolve the universal constraint on accelerations (22) (say, along x, and

analogously along y)

a(1)x (s) + a(2)x (s) + a(3)x (s) = 0, (25)

one may introduce the forces of mutual action and reaction

a(1)x (s) = f (21)
x + f (31)

x , a(2)x (s) = f (32)
x + f (12)

x , a(3)x (s) = f (13)
x + f (23)

x , (26)
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which then shoud satisfy the 3-d Newton’s law:

f (21)
x + f (12)

x ≡ 0, f (13)
x + f (31)

x ≡ 0, f (32)
x + f (23)

x ≡ 0. (27)

However, system (26),(27) cannot be uniquely resolved with respect to the forces

of mutual action-reaction. Of course, this fact is valid for any number of particles

N ≥ 2 and is of general importance. In other words, in a closed mechanical system it

is principally impossible to uniquely determine contributions of partial forces of action-

reaction using only observations on accelerations of all the individual particles! This fact

(probably, not so widely known) can be regarded as the indication that, generally, the

N -body problem should from the beginning be formulated at the language of collective

interactions.

Let us now again return to consider the general construction presented above at

the model of “mechanical” system consisted of N = 9 “particles” and defined by the

equations of the Worldline (13). Since the terms of degree 8 = N − 1 in the eliminants

(14),(15) are nonzero and corresponding coefficients, moreover, depend on the time

parameter s, the total momentum is not conserved so that equations (13) represent the

Worldline in a non-inertial reference frame. In order to make a transition to the center

of mass frame, one has to execute, according to (17), transformation of coordinates of

the form

x = x̃+ s2, y = ỹ + s. (28)

In the new variables, eliminants (14),(15) take the form

Rx(y) = 17y9 + 0 + (35 + 33s)y7 + ... = 0; (29)

Ry(x) = −17x9 + 0 + (4s− 4)x7 + ... = 0; (30)

whereas the defining system (13) turns to be the (already examined in the previous

section) system of equations (6). It is now not difficult to check that the total momentum

of all 9 particles defined by the latter is the same at every instant s and, precisely,

equal to zero. Thus, equations (6) and (13) represent in fact the same ensemble of

identical particles in the inertial center of mass reference frame and in a non-inertial

one, respectively.

To conclude the section, it is worthy to note that besides the simplest linear Vieta’s

formulas (16), there exist other nonlinear ones highest of which, say, look as follows:

x1(s)x2(s)...xN(s) = f0(s)/fN(s), y1(s)y2(s)...yN(s) = g0(s)/gN(s). (31)

In principle, it is possible to find a transformation of coordinates that will do away with

a number of terms in the eliminants; in this case one would have, apart from the center

of mass and the related total momentum conservations, other combinations of roots

(and their derivatives) which would preserve their values in time (“nonlinear integrals

of motion in the framework of Newtonian mechanics”?). However, such transformations

are implicit in nature (see, e.g., [21, 25]), and to find the transformed form of the defining

system of equations as a whole is very difficult if possible. This problem certainly

deserves further consideration.
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4. Remarks on relativization of the scheme

We have demonstrated that any general system of polynomial equations like (10)

completely defines a single “Wordline” and an ensemble of identical pointlike particles

located on it. Their dynamics with respect to the evolution parameter s reproduces

generic structure of the Newtonian mechanics and, after the choice of a special (inertial)

reference frame, obeys the law of momentum conservation.

It is now necessary (especially, in account of one’s claims to offer the explanation of

annihilation/creation processes) to seek for possibilities of relativization of the theory.

The formal way used for this purpose by Stueckelberg and his followers, as it was

demonstrated in the Introduction, seems to be unsatisfactory since it forbids realization

of the “one-electron Universe” conjecture. On the other hand, whether one regards the

invariant parameter s as a “true” time (with respect to which velocities of “particles”

on the Worldline should be defined), then the scheme comes into irreconcilable conflict

with the principles of STR (causality problems, tachyonic behavior). Besides, the very

sense of the s-parameter and its relation to other “times” (coordinate time, proper time

etc.) still remains vague.

In order to remove contradictions with the STR, as the first natural step one has to

explicitly introduce into the scheme an observer and consider the process of detection

of the (R- and C-) particles. Specifically, one must supplement the system of equations

like (10) (generalized to the 3D case) by the retardation equation

c2(t− s)2 = (xo(t)− x)2 + (yo(t)− y))2 + (zo(t)− z))2. (32)

Here the functions {xo(t), yo(t), zo(t)} define the worldline of an observer while {x, y, z}
are the coordinates of the particles’ Wordline implicitly depending on s via the system

(10). At this step, the fundamental constant – velocity of light c – enters the

theory for the first time. Moreover, introduction of the light cone equation (32)

clarifies the meaning of s as of the retarded time parameter. Now, at any instant of the

laboratory time t the observer receives lightlike signals from the whole set of particles

located on a single Wordline but at distinct instants of the retarded time s. Besides, this

procedure opens a possibility to escape tachyonic behavior of particles at hand. Indeed,

velocities fixed by the observer with respect to his own time and to the retarded time

defined by localizations of particles themselves can be quite different [26]. We remark

that on a complexified space-time background, corresponding procedure was already

exploited in the afore-mentioned theory dealing with the ensemble of duplicons [7, 27]

and will be considered in more details elsewhere.

Another possibility to overcome superluminar velocities relates to the old conjecture

of F. Klein [28], Yu.B. Rumer [29] et al. that any pre-element of matter always have in

fact the same, constant in modulus velocity (equal to that of light in vacuum c) but in a

multidimensional extension of physical space. In order to realize this idea in our scheme,

one should consider the 4D Euclidean space E4 (with s being the fourth coordinate) and
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introduce the following definition of the time increment dt:

c2dt2 := c2ds2 + dx2 + dy2 + dz2, (33)

which is equivalent to the statement about universal total velocity (= c),

u2 + ~v2 = c2, (u := c
ds

dt
, ~v :=

d~r

dt
, ~r := {x, y, z}). (34)

Introduction of the Euclidean structure, instead of the habitual Minkowski

geometry, looks rather marginal. However, G. Montanus [31] had demonstrated that

the so called Euclidean relativity could reproduce the main effects of the STR. On the

other hand, I.A. Urusovskii in an interesting series of papers [32, 33, 34] combined

the postulate on universal total velocity (34) with the conjecture on universal uniform

rotation of particles in the “additional” space dimensions (precisely, 3 in number in his

scheme) round the circle of radius equal to their Compton length. These two statements

have deep consequences and allow, in particular, for visual geometrical explanation

of many relations of quantum theory (for this, see also [30]). As to the related

group of transformations, Urusovskii demonstrated that this status can be preserved

by the Lorentz group, so that his scheme had been called the “6D treatment of Special

Relativity” [32].

In the framework of the scheme presented here, the Montanus-Urusovskii’s approach

is interesting in two aspects. The first one is rather evident: velocities of the considered

particles, with respect to the newly defined time interval dt, become bounded from above

and, in particular, approach maximal possible value c near the annihilation points.

The second aspect deals with relativization of the expression for momentum. From

(33) it follows (as usually in the STR):

ds = dt
√

1− v2/c2, (35)

so that the previous Newtonian expression for momentum (21) (with “restored” equal

rest masses m)

Px = mẋ = m
dx

ds
, Py = mẏ = m

dy

ds
, Pz = mż = m

dz

ds
(36)

takes now the well-known relativistic form

Px = mvx/
√

1− v2/c2, Py = mvy/
√

1− v2/c2, Pz = mvz/
√

1− v2/c2. (37)

Remarkably, the generating law of conservation of the center of mass position (20)

contains no differentiations and therefore preserves its “non-relativistic” form.

We are not ready to discuss here all the consequences of introduction of the

Euclidean time increment (33), the more so that some of them seem to differ from

those required by the STR. It is only noteworthy that, geometrically, corresponding

time interval ∆t is equal to the path length (arc length of the trajectory curve) and can

be calculated via explicit integration.

In account of the existence of the second kind of particles related to complex

conjugate roots (C-particles), the definition of time increment (33) in fact should be

generalized as follows:

c2dt2 := c2ds2 + (dx2 + dξ2) + (dy2 + dη2) + (dz2 + dζ)2, (38)
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where {dξ, dη, dζ} are the imaginary parts of increments of corresponding complex

coordinates.

Finally, we note that introduction of the time increment in the form (33) makes

corresponding time kinematically irreversible: any movement in the physical 3D or in

an extended (real or complexified) space, by definition, gives rise to an increase of the

time value, dt > 0.

5. Conclusion

The Stueckelberg-Wheeler-Feynman’s conjecture about identical particles moving along

a unique worldline, of course, looks attractive not only from “philosophical” viewpoint.

It easily solves, say, the paradox that pointlike particles can altogether meet at some

points of the physical 3D space (even for a 2D space the codimension of such an event

is zero!). Moreover, the very condition that all such particles-copies belong to the same

curve, turns to be a rigid restriction which requires a strongly correlated dynamics of

these copies reproducing in fact the process of physical interactions.

Remarkably, after proper specification of the reference frame, any system of defining

equations for the Worldline ensures (via the Vieta’s formulas) correlations between the

whole set of its roots which precisely correspond to the law of momentum conservation

(for the closed system of two kinds (R- and C-) of particlelike formations represented by

real and complex conjugate roots, respectively). This looks as an important indication

to the purely algebraic origins of the structure of (Galilean-Newtonian)

mechanics and of physical interactions in general.

Moreover, there exist some hints that structure of the forces’ laws themselves can

be also encoded in general properties of the unique Worldline. For instance, as far as in

1836, C.F. Gauss had made an interesting observation on the roots {zk}, k = 1, 2, ..., N

of a single polynomial equation F (z) = 0 of a general form (see,e.g., [21, ch. 1]).

These define a set of identical particles located at corresponding points of the C-plane.

Consider now any root z0 of the derivative polynomial equation F ′(z) = 0 (which does

not coincide with a (multiple) root of the initial equation). Then it corresponds to a

libration point (point of equilibrium) for the resultant field of radial forces produced

by all the roots {zk}, under the condition that these forces be inversely proportional

to the distance, fk ∝ 1/|z − zk| (and effective “charges” of the sources are all equal).

Unfortunately, we were unable to find an analogue of this remarkable property in the

3D case. However, this example indicates that even in the 2D case (and in the 3D

one as well) the roots of the derivative equations for eliminants (11),(12), namely,

R′x(y) = 0, R′y(x) = 0 define in fact a new (third) kind of particlelike formations

whose dynamics can be correlated with others in a quite nontrivial way. We intend to

consider this issue in a forthcoming publication.

Finally, it is noteworthy that any particle from the ensemble under consideration

can be naturally endowed with equal (elementary) electric charge and produces an

electromagnetic field of the Lienard-Wiechert type. It is especially interesting that
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this field undergoes an amplification at the points of merging (annihilation/creation)

of a pair of particles, so that one has a nontrivial caustic locus which can be naturally

regarded as a set of quantum-like signals perceived by an external observer [10, 7].

As to identification of the considered pointlike formations (matter pre-elements)

with real particles, at present stage of investigation this, of course, seems premature.

Moreover, physical particles could be detectable only at discrete instants of merging of

some two or more pre-elements when only they emit a quantum-like signal. On this way

one naturally comes to the concept of dimerous electron [7, 27] which was found to be

especially useful in geometric explanation of the quantum interference phenomena.

Generally, at first one could make an attempt to find the reasons for “attraction” of

different roots and, presumably, for their ability to form a sort of (stable) clusters which

could really represent elementary particles, nuclei etc. At present this still looks like a

hardly achievable dream though the results obtained above give an essential support to

realization of the program.

Appendix

Making use of the general procedure described in Section 3, let us examine in detail the

dynamics defined by the polynomial system of equations (6). The trajectory curve of

particlelike formations represented by real roots of this system follows after elimination

of the evolution parameter s, is defined by the equation

x4 + 3x3y + 2x2y2 − 2x3 + y3 + 3x+ 2y − 2 = 0 (A.1)

and consists of three disconnected components (see figure 2 in Section 2 above).

The full expressions for equations on eliminants Ry(x) and Rx(y) of the system (6)

are as follows (compare with (29)):

Ry(x) = −17x9 + (−4 + 4s)x7 + (3s+ 25)x6 + (4s2 + 12 + 16s)x4+

(−3s2 − 18s− 27)x3 + 27s+ s3 + 9s2 + 27 = 0;

Rx(y) = 17y9 + (35 + 33s)y7 + (−6s+ 52)y6 + (15s2 + 34s+ 19)y5+

(40 + 8s− 16s2)y4 + (49s+ 11s2 − s3 + 113)y3 + (−50s− 12− 18s3 − 72s2)y2+

(148s2 + 28s3 + 208s+ 48)y − 64 + s4 − 48s2 − 5s3 − 96s = 0.

(A.2)

One obtains from (A.2) that at any instant s system (6) has 9 solutions some of them

composing complex conjugate pairs; besides, since the terms of the 8-th degree are

absent, the total momentum of the two types (R- and C-) of particles represented by real

and complex conjugate roots is permanently equal to zero (the center of mass reference

frame). Values of s that determine singular points for the solutions of (6) related to the

annihilation/creation events correspond to multiple roots †† of the equations (A.2), or

common roots of the two systems of equations{
Ry(x) = 0,

R′y(x) = 0,
(A.3)

†† In order to determine these, one could use the explicit condition (5). We, however, prefer below

another, more visual, method of discriminants
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and {
Rx(y) = 0,

R′x(y) = 0,
(A.4)

where “prime” denotes differentiation with respect to x or y, respectively.

Computing now resultants of the two polynomials in (A.3) or (A.4), which are

in fact the so called discriminants of equations (A.2) one verifies that these two have

common factors, so that critical values of parameter s are obtained from the real roots

of the equation

Rcommon(s) = (s+ 3)3(−1030738720704832− 2585288646749952s−
2876632663642944s2 − 3915728526452064s3 − 6758379899262912s4−
7627803495311328s5 − 5242401840993563s6 − 2294579103345501s7−
652002779260446s8 − 117671742918602s9 − 12435143753367s10−
617360791689s11 − 4976985600s12 + 1769472s13) = 0.

(A.5)

Equation (A.5) has obvious root s = −3 of multiplicity 3 and 13 other roots of which only

5 turn to be real. Thus, system (A.2) defines 6 critical values of parameter s at which

some mergings of roots and related particlelike formations take place. Approximate

critical values of s had been written out in the text (Section 2) and will be reproduced

below. Corresponding coordinates of the points of merging are then readily obtained

from the eliminants’ equations (A.2).

Consider now graphical representation of the successive dynamics of roots of the

system (6) at different values of the time parameter s. To begin with, let us agree about

the notations on figures. Circles designate the positions of real roots (particles of the

type R), squares – real parts of complex conjugate roots (particles of the type C) which

are assumed thus to be located both in one and the same space point. Arrows designate

the direction of motion of roots under positive increment of the parameter s. The roots

are numbered in order to follow their successive dynamics and transmutations. By grey

cross or circle with corresponding inscriptions sk, k = 1, 2, .. one denotes the positions

and instants of the annihilation or creation events, respectively. Finally, by dotted

lines some segments of the projection of trajectories of complex conjugate roots onto

the real plane are denoted, for visual representation of the dynamics of corresponding

C-particles.

At figure A1a one sees that the real roots 1 and 2 move towards one another along

the first branch of the trajectory C (4), up to their annihilation at s1 ≈ −97.3689.

Figure A1b represents the intervening situation, when the above roots become

complex conjugate and are under trasition to the other branch B when they are expected

to give rise to a new pair of R-particles, at s2 ≈ −4.025. Note that one pair of complex

conjugate roots is off the depicted space at figure A1a and figure A1b so that only 7

roots are represented therein.

At figure A2a one sees that the considered roots 1 and 2 give rise to a pair of real

R-particles (1 and 2), at the branch B of the trajectory. The root 3 moves towards real

root (1) and will merge with the latter at s3 = −3. Note that the third pair of complex
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Figure A1: Disposition of roots of the system (6): (a) at s ≈ −162.37; (b) at s ≈ −39.025

(after first annihilation).
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Figure A2: Disposition of roots of the system (6): (a) at s ≈ −3.725 (after first pair

creation); (b) at s = −3 (double merging).

conjugate roots (8 and 9) appears in the space of vision so that the full number of roots

(N=9) is depicted here and at the subsequent figures.

At figure A2b a peculiar situation of double merging is presented at s3 = −3 (recall

that this is the exeptional root of multiplicity 3 of the equation for “events” (A.5).

At this instant, besides the annihilation of two real R-particles (1 and 3) one has the
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merging of two complex conjugate pairs of roots (6,7 and 8,9) which takes place in the

space exterior to the real trajectory (i.e. in the complex extension of the “physical”

3D space). Contrary to mergings of real particles, such an event is not accompanied

by annihilation of a pair: in what follows, the merged pairs deviate from one another,

without any modification of their structure (see figure A3a).
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Figure A3: Disposition of roots of the system (6): (a) at s ≈ −2.9; (b) at s ≈ −2.768

(second pair creation).
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Figure A4: Disposition of roots of the

system (6) at s ≈ 1432.49 (after third

annihilation).

At figure A3a one observes only one

real root (2) while one pair of complex

conjugate roots (6 and 7) (after divergence

with the other pair (8 and 9) moves

towards the branch B of the trajectory

where it will give rise to a pair of real roots

(6 and 7) at the next moment s4 ≈ −2.78.

At figure A3b the two created real

particles (6 and 7) move at opposite direc-

tions along the branch B of the trajectory.

At the next moment annihilation ot roots

(2 and 7) at s5 ≈ −2.77 is expected. The

pair of complex conjugate roots moves to-

wards the third branch A of the trajectory

(to be seen at the next figure) which at the

moment is still “empty”.

At figure A4 disposition of roots are

presented in a much greater scale. After

annihilation of the roots 2 and 7 only one
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real R-particle (6) survives on the branch B. The pair of roots 8 and 9 moves (precisely,

in complex extension of space) towards the third, “empty” branch of the trajecory A

where the third pair creation is expected at the future moment s ≈ 2932.49. After

this last event, there exist two real particles at branch A, one real particle at branch B

and three pairs of complex conjugate roots (three C-paricles). From now on, no other

merging events do exist: the dynamics is in fact over.

Full animation of the above presented dynamics is accessible with the

help of the enclosed file ???
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