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1. INTRODUCTION
In the paper, we generalize the well-known theorem claiming that every finite group is the full

automorphism group of some finite graph [1–6]. Namely, we claim that every (in general, infinite)
group is the full automorphism group of some topology. In the system of definitions we use, the
automorphisms and the isomorphisms of a topology coincide with homeomorphisms, i.e., with
topological mappings (we sometimes treat homeomorphisms in a more general way).

Moreover, we consider a special generalization of the notion of topology obtained by weakening
the base system of axioms and producing the so-called inductor spaces. The class of these spaces
includes not only the ordinary topological spaces but also finite and infinite directed graphs, and
also special spaces that are neither topological spaces nor graphs. The application of this notion
enables one to immediately generalize the above theorem on automorphisms of graphs to infinite
groups and graphs. We also describe the standard actions of some geometric symmetry groups as
full automorphism groups of inductor spaces constructed from the corresponding geometric spaces.

In particular, we construct an inductor space on the set of points of a finite-dimensional linear
space in such a way that the symmetry group of the inductor space coincides with the Lorentz group
provided that the dimension exceeds two. Here the topology induced on every hyperplane cutting
out isotropic cones is homeomorphic to the Euclidean one. This result admits a purely geometric
formulation. If the dimension of the space is greater than two, then the full automorphism group
of the system of cones obtained by parallel shifts of the same spherical cone coincides with the
standard action of the Lorentz group (on the space of the corresponding dimension) extended by
arbitrary translations, uniform dilations, and also rotations and reflections (Euclidean isometries)
in the hyperplane of the spherical section of the cones. The proof uses an earlier result of the
author [8] claiming that the affine automorphism group of this system of cones coincides with the
group of the above action. We also claim that, if the dimension exceeds two, the automorphisms of
the structure are affine.

Representations in the form of automorphisms of an inductor space can also be constructed for
the main Euclidean isometries, namely, translations, rotations, and rotations with reflections [11].
The corresponding results are not included in the present paper.

The author expresses his gratitude to A. I. Shtern, A. Yu. Lemin, S.Yu. Vladimirov, M. I. Graev,
A. P. Levich, Yu.B. Kotov, V. V. Smolyaninov, A. P.Chernyaev, and A. I. Lobanov for the interest
to the present paper, help, and useful remarks.

2. INDUCTOR SPACES
To solve the problem to represent groups by automorphisms of topologies or graphs, it is con-

venient to introduce an object generalizing these notions and defining a structure on an abstract
point set such that the automorphisms of the structure form a representation of the given group.
To this end, we introduce the class of inductor spaces.

Definition 2.1. By an induction relation I on a set T we mean an arbitrary set of pairs of the
form [t, V ]I , where t ∈ T, V ⊂ T . We refer to elements of the induction relation [t, V ]I as inductor
pairs, the point t is called the center of induction or the center of the pair, and the set V is called
the inductor of the pair or of the point t.
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Definition 2.2. By an inductor space we mean a set T with an induction relation I satisfying
the following axioms.

AI1. Axiom of membership. If [t, V ]I ∈ I, then t ∈ V .
AI2. Axiom of transitivity. If [t, V ]I ∈ I, [x,W ]I ∈ I, x ∈ V , then [t, V ∪ W ]I ∈ I.
In [7–9], inductor spaces were introduced with an extended family of axioms. However, inves-

tigations show that the other axioms reduce the class of objects too much and lead to technical
complications in the proofs of some theorems. However, the theorems proved below remain valid in
the extended axiomatics. The corresponding proofs are presented in [9].

From the point of view of topology, it is natural to interpret an inductor as a neighborhood
of the center of induction of a given induction pair. Correspondingly, one can speak about the
convergence of sequences and on limit points of subsets on T if an induction relation is given. The
axiom of transitivity is in this interpretation a weakened axiom of arbitrary union of open sets.
From the point of view of graph theory, one can interpret an inductor as a subset of vertices from
which there is a path to the center of induction along the arrows of the graph. Correspondingly,
the axiom of transitivity can be interpreted as the possibility to augment the corresponding paths
on the graph.

We sometimes use the abbreviated terms “I-relation,” “I-pair,” and “I-space.” On an inductor
space, we refer to the induction relation as the induction, the set T is called the support of induction,
and its elements are referred to as points of the space. This term arose in the use of I-spaces as
supports of distributed processes in mathematical models, where inductors of a point play the role
of domains of influence on the point [8, 9]. This interpretation is inessential for the purposes of the
present paper.

In the general case, inductor spaces are neither graphs nor topological spaces. For the corre-
sponding examples, see [8, 9]. However, topological spaces and graphs are simplest special cases of
I-spaces. For exact definitions, see [8, 9] and the definitions given below.

3. RELATIONS OF INDUCTOR SPACES TO GRAPHS AND TOPOLOGICAL SPACES
A topology τ given by a family of open subsets on a set of points T defines an inductor space

formed of all possible I-pairs of the form [x, V ]τ , where V ∈ τ, x ∈ V . In this case, to any topological
neighborhood of an arbitrary point there corresponds an I-pair with the center of induction at a
given point. To any open set, the set of I-pairs corresponding to diverse centers is assigned.

Here it should be taken into account that, when constructing the topology from a base family
of neighborhoods of the points, one uses a broader class of generating operations (arbitrary unions
and finite intersections) than that for the inductor spaces (with transitive unions only). Therefore,
the base family of I-pairs generating the topology in the form of an inductor space corresponds in
the general case to an extended family of base neighborhoods.

An important difference between the general construction of an induction from a topology is
that a point can belong to an inductor which is not a proper neighborhood of the point, i.e., there
is no I-pair for which the given point is the center of induction in the inductor. However, when
passing from topology to an induction in the above way, this situation cannot occur.

A directed graph with a set of vertices T (defined as a given subset S ⊂ T × T of the ordered
pairs of vertices (“arrows”) (x, y) = (initial vertex, ending vertex)) can be described as an inductor
space on the set of vertices as points (the base I-pairs are of the form [x, V ]S , where x is a vertex
and V is the set of vertices issuing arrows ending at x, V = {y|(y, x) ∈ S}). The other elements of
induction are defined by the base elements by the axiom of transitivity.

Definition 3.1. The above constructions of inductions from topologies and graphs are said to
be canonical.

Corollary 3.1. For a graph, a vertex y enters some inductor of a vertex x if and only if there
is a path from y to x along the arrows.

Corollary 3.2. Both for topologies and for graphs, under the canonical imprinting (passage to
the corresponding inductions), the intersection of any two inductors of a point gives an inductor
of the same point. A more general property holds: if some inductor of a point x belongs to an
inductor V of some point y, then any inductor of x intersects V by an inductor of x.

Other versions of correspondence are possible. Their common property is the possibility to
uniquely recover the topology or a graph from the induction, and conversely. A version of passage
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from a topology to an I-space by using closures of open sets as inductors was suggested in [7–9].
This was convenient to describe models of distributed processes. In this version, limit points for
sets and sequences must be defined by using interiors of inductors as neighborhoods of points. We
do not consider this version in the present paper.

Definition 3.2. By an alternative passage from a graph to an induction we mean base I-pairs
[x, {x; y}]Sa, (x, y) ∈ S. These must also be completed by I-pairs obtained by the closure according
to the axiom of transitivity.

In general, this version gives more inductors of a point than the canonical one. Corollary 3.2 can
fail for the alternative passage, but Corollary 3.1 is preserved.

Some topological notions can be extended to general inductor spaces.

Definition 3.3. A point is said to be interior for some subset of the support of induction if this
subset contains some inductor of the point. The other points of this subset are said to be boundary.
A point is limit for a subset of the support if any inductor of the point contains an element of the
subset. A point is limit for a sequence of points in the support of induction if any inductor of the
point contains infinitely many terms of the sequence. A point is a limit of a sequence if any its
inductor contains all terms of the sequence starting from some of them.

4. AUTOMORPHISMS OF INDUCTOR SPACES
The class of inductor spaces can be equipped with the notion of isomorphism.

Definition 4.1. Two I-spaces [T, I], [T ′, I ′] are said to be isomorphic if there is a bijection
of the supports (an isomorphism) h : T ↔ T ′ generating a bijection of the inductions H : I ↔ I ′,
where H ◦ [t, V ]I

def=[h(t), h◦V ]I′ . An isomorphism of an I-space onto itself (T = T ′, I = I ′) is called
an automorphism.

Definition 4.2. The automorphisms of any I-space [T, I] form a group with respect to the
operation of superposition. Denote it by aut[T, I] (the automorphism group). The unit element is
the identity automorphism E(x) = x, x ∈ T . The element inverse to an arbitrary automorphism h
is the bijection h−1.

Lemma 4.1. Homeomorphisms of topologies and isomorphisms of graphs are equivalent to iso-
morphisms of inductor spaces under the canonical mapping.

Proof. If there is a homeomorphism of two topologies, then the image and the preimage of any
open set in one of the topologies is open in the other. Under the canonical mapping into an inductor
space, the inductors are bijective images of open sets and the corresponding centers of induction
are bijective images of points of these sets. Thus, every homeomorphism of two topologies is an
isomorphism of their canonical imprints. Conversely, an isomorphism of two canonical imprints of
topologies is a bijection of the sets of their supports under which every inductor of one of the
inductions is the image (and the preimage) of an inductor of the other induction. Hence, every
open set of one of the topologies is the image and the preimage of an open set of the other, and
hence the mapping is a homeomorphism. Thus, we are done for topologies.

An isomorphism of two graphs is a bijection of the sets of their vertices under which the arrows
of one of the graphs are unique images and preimages of the arrows of the other graph. This means
that the minimal neighborhood of any vertex with respect to the incoming arrows of one of the
graphs corresponds to the minimal neighborhood of the image of this vertex with respect to the
incoming arrows of the other graph. Since these neighborhoods form a generating system of I-pairs
of each of the inductions, it follows that an isomorphism of graphs is an isomorphism of their
canonical imprints. Conversely, if there is an isomorphism of canonical inductor imprints of two
graphs, then it defines a bijection of the supports of these I-spaces, and the supports coincide with
the sets of vertices. Every isomorphism of inductor spaces preserves an embedding of inductors of
any point because it is a bijection. Hence, if a point has an inductor that is minimal with respect
to inclusion, then it is mapped onto the minimal inductor of the image of the point (both under
the direct and the inverse mapping). Hence, an isomorphism of canonical imprints of two graphs
assigns to incoming arrows (of any vertex) of one of the graphs incoming arrows (of the image
of this vertex) on the other graph. This means that the image and the preimage of any arrow is
an arrow of the corresponding orientation, which defines an isomorphism of graphs because the
mapping is bijective.
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Remark 4.1. Lemma 4.1 remains valid for the alternative passage from a graph to an I-space
because the images of the arrows in this graph are minimal inductors of their issuing vertices.
In this case, a point can have arbitrarily many minimal inductors. For a canonical mapping (of a
graph of a topology), at most one minimal inductor can occur.

5. RIGID I-SPACES, TOPOLOGIES, AND GRAPHS
Definition 5.1. An inductor space is said to be rigid if its automorphism group consists of the

identity automorphism only, aut[T, I] = {E} .

The rigid spaces form an infinite class. This enables one to extend inductor spaces in such a way
that their automorphism groups are preserved or even strictly reduced. Below we suggest a standard
construction of infinitely many pairwise nonisomorphic rigid spaces which is used in the proof of
the main theorems.

Consider an arbitrary transfinite order type p. To this type, there corresponds a well-ordered set
of the related cardinality #p, which is a transfinite sequence of order type p of pairwise distinct
elements,

S(p) = (a1, a2, . . . , ap) . (5.1)
If p is a limit ordinal, then the last term in (5.1) must be understood conditionally, as a restriction
of the sequence. Assign to the sequence (5.1) the following inductor space SHp = [S(p),H(p)] with
the support S(p) and the induction H(p),

H(p) = {[ai, {a1; a2; . . . ; ai}]H | i � p} . (5.2)
In the induction (5.2), the only inductor of any point i is the set S(i) ⊂ S(p) of the elements
in (5.1) that do not exceed i in this ordering. The spaces SH(p) are not isomorphic for distinct
ordinals p because there is no order-preserving bijection for transfinite sequences of distinct or-
der types. For the same reason, the automorphism group of SH(p) is trivial. Every initial seg-
ment S(i) in S(p) (an inductor) can be strictly monotonically mapped only onto itself, and thus
aut(SH(p)) = aut[S(p),H(p)] = {E}.

Lemma 5.1. For any cardinality m, there is a rigid inductor space whose support is of cardi-
nality m. To any ordinal p of cardinality m, there corresponds a rigid I-space nonisomorphic to any
space of this kind for other ordinals. (The proof was given above.)

Remark 5.1. In what follows, we need a set of G copies of some rigid space that are isomorphic
but distinguishable. To this end, we introduce a parameter g ∈ G. Copies of the space are denoted
by SHp,g = [S(p, g),H(p, g)] and their points by a(g)i, in accordance with (5.1).

One can pass from rigid I-spaces to rigid topologies and graphs.

Definition 5.2. A graph is said to be rigid if its automorphism group contains the identity
automorphism only.

Lemma 5.2. For any cardinality m, there is a rigid graph with support of cardinality m. To any
ordinal p of cardinality m, there corresponds a rigid graph nonisomorphic to these graphs for other
ordinals.

Proof. The above I-space SHp is the canonical imprint of the graph SHGp with the set of
vertices S(p) and the arrows of the form (ai, aj), where 1 � i � j � p. The assertion of the lemma
follows from Lemma 4.1 and Lemma 5.1.

Definition 5.3. A topological space is said to be rigid if the group of its automorphisms (self-
homeomorphisms) contains the identity automorphism only.

Lemma 5.3. For any cardinality m, there is a rigid topological space with support of cardinal-
ity m. To any ordinal p of cardinality m, there corresponds a rigid topological space not homeomor-
phic to the topological spaces corresponding to the other ordinals.

Proof. The inductors of the above I-space SHp give a base system of neighborhoods for the
canonical imprint of the topological space SHTp constructed on the point set S(p) by using the
open sets of the form S(j), 1 � j � p. The set S(i) is the minimal neighborhood of the point ai

and the minimal inductor of the canonical imprint of ai. Under an automorphism of inductions,
the minimal inductor of a point passes to the minimal inductor of its image. Therefore, every
automorphism of SHTp is an automorphism of SHp. Thus, the assertion of the lemma follows from
Lemma 4.1 and Lemma 5.1.
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6. REPRESENTATIONS OF GROUPS BY AUTOMORPHISMS
OF I-SPACES, TOPOLOGICAL SPACES, AND GRAPHS

As was proved in [8, 9], every group defines an infinite class of inductor spaces whose auto-
morphism groups are (algebraically) isomorphic to the given group. We refer to these spaces as
imprints of the group (giving the class of imprints), and their automorphisms can be regarded as
representations of the group. The induced action of automorphisms on the linear space of func-
tions defined on the support of an I-space gives a (“multiplicative”) representation into an algebra
of linear operators. To obtain a similar result for automorphism groups of topological spaces and
graphs, below we use the construction of inductor imprints of groups.

Definition 6.1. An inductor space is said to be an inductor imprint (an I-imprint, an imprint)
of some group if the full automorphism group of the space is isomorphic to the given group.

Theorem 6.1. Every group G admits an inductor imprint.

Proof. Let us use the notation Sp, Hp, and SHp introduced in the proof of Lemma 5.3. Denote
by m the cardinality of the set of elements of the group G. Let Q = {Yg|g ∈ G∪{0}} be a family of
disjoint sets (layers), the cardinality of each of the layers Yg being equal to m. Choose an ordinal
p of cardinality m. Define a bijection r : G ↔ Sp. On any set Yg ∈ Q, we introduce a bijection
hg : Yg ↔ G. In this case, a bijection r ◦ hg = rg : Yg ↔ Sp is well defined. Let us equip every
layer Yg, g ∈ G, with the induction Ig = Hp with respect to the order rg. Define the induction
I0 = {[x, {x}]I |x ∈ Y0} on the set Y0; we refer to I0 as a loop induction because I0 canonically
corresponds to a graph in which every vertex gives an arrow to itself and there are no other arrows.
Write T = ∪Q. The induction I on T , along with the above inductors in ∪Ig|g∈G ∪{0}, contains all
inductors of the form [x, {x; z}]I , x ∈ Y0, z = h−1

g (h0(x)g−1), g ∈ G. This corresponds to arrows of
the graph J joining the point x of the layer Y0 (as the entrance point) to the point z of the layer
Yg (as the issuing point), and z corresponds on the layer Yg to the right multiplication by g−1 ∈ G
of the image of the point x in the system of mappings h of these layers onto the group G.

Let us show that aut[T, I] � G. The induction on every layer Yg, g ∈ G, is rigid. Hence, under
any automorphism, this layer can be mapped only onto a layer of the same form by preserving
the order of r. The layer Y0 can be mapped only onto itself, and admits arbitrary self-bijections
with respect to the induction I0. However, these self-bijections are limited by the graph J . The
only admissible auto-bijections must take the layers Yg, g ∈ G, bijectively onto one another by
preserving the arrows in J . Let us show that every bijection of this kind corresponds to the right
multiplication of the indices of the layers by some element of the group. Let v ∈ aut[T, I], x ∈ Y0.
For any x, there is an f ∈ G, f = (h0(x))−1h0(v(x)), for which v(x) = h−1

0 (h0(x)f). Consider an
arbitrary layer Yg, g ∈ G. Suppose that v ◦ Yg = Yq. There is a unique arrow (x, zg), zg ∈ Yg, in
the graph J , namely, zg = h−1

g (h0(x)g−1). Since v is an automorphism, it follows that J contains
an arrow (v(x), v(zg)), where v(zg) = h−1

q (h0(v(x))q−1) = h−1
q (h0(x)fq−1). Since v : Yg ↔ Yq is

an isomorphism, it follows that r(hg(zg)) = r(h0(x)g−1) = r(hq(v(zg))) = r(h0(x)fq−1). Since r
is bijective, we have h0(x)g−1 = h0(x)fq−1 and q = gf .

Since the entire layer Yg is taken onto the layer Yq, it follows that the element f of the group
is the same for any x ∈ Y0, namely, f = g−1q. The automorphism v on the layer Y0 is of the form
v ◦ Y0 = h−1

0 ◦ ((h0 ◦ Y0)f). If v1, v2 ∈ aut[T, I], and if the elements f1, f2 ∈ G correspond to v1

and v2 by the above formula, then v2 ◦ v1 ◦ Y0 = h−1
0 ◦ ((h0 ◦ Y0)f1f2). This formula establishes an

isomorphism aut[T, I] � G. Thus, the automorphisms define a representation of the group.

Remark 6.1. If one identifies the elements of the layers Yg with the elements of the group G
with respect to the bijections hg and if e is the identity element of G, then, on the layers with
the indices g ∈ G, the graph J writes out a permutation of the elements of the layer Ye which
arises under the right action of the element g−1 on the group. Therefore, an automorphism is
admissible only if a self-action of the group corresponds to the automorphism. This excludes the
outer automorphisms of the group from aut[T, I]. In fact, the above imprint of the group in the
finite case corresponds to the representation of all permutations of the elements of the group arising
under a multiplication by an element of the group in the form of a graph.

Claim 6.1. The nonisomorphic imprints of a given group form an infinite class.
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Proof. The assertion follows from Lemma 5.1. Consider the union of an I-space T and a rigid
space X disjoint from T and such that X has no isomorphic embeddings in T . If now new inductors
are added, then aut(T ) � aut(T ∪ X). At the same time, adding nonisomorphic spaces X gives
nonisomorphic unions.

Theorem 6.2. Every group has an imprint in the class of graphs (in general, infinite).

Proof. Consider the construction in the proof of Theorem 6.1. By Lemma 5.2, the rigid layers
Yg can be constructed in the form of graphs. Their union with the graph Y0 by using the graph J
gives a desired graph with the automorphism group aut[T, I] � G.

Remark 6.2. If a group is finite, then the imprint constructed above is a finite graph.
Thus, the above construction gives another proof of the theorem concerning representations of

finite groups [2].

Theorem 6.3. Every group G has an imprint in the class of topological spaces.

Proof. Consider the construction in the proof of Theorem 6.1. By Lemma 5.3, the rigid layers
Yg can be constructed in the form of topological spaces. The layer Y0 can then be equipped with the
discrete topology. The arrows of the graph J are transformed into open sets not canonically. This
is needed to prevent the occurrence of new neighborhoods on the layers Yg. Denote by Wg(x) the
set of elements on Yg which do not exceed x in the ordering of Sp. An arrow (x, y), where x ∈ Yg

and y ∈ Y0, is transformed to the open set Vx,y = {y}∪Wg(x). In this case, the layers remain rigid
because they keep the intrinsic topology of Lemma 5.3. New neighborhoods of points occur on the
layer Y0 due to unions of open sets Vx,y. However, the correspondence of the points of the layers
is preserved as in the graph J , because Vx,y is the minimal neighborhood of the point y having
an intersection with the layer containing x. Therefore, under any automorphism, Vx,y comes to a
neighborhood of the same form. These neighborhoods of the point y ∈ Y0 (on every layer) uniquely
define the arrow (x, y). We obtain a topological space with the automorphism group aut[T, I] � G.

Remark 6.3. If a group is finite, then the imprint thus obtained is a finite topological space.

7. REPRESENTATIONS OF AN ACTION OF A GROUP BY
AUTOMORPHISMS OF I-SPACES, TOPOLOGICAL SPACES, AND GRAPHS

Definition 7.1. By an action W : G of some group G on a given set W we mean a family
Q of self-bijections of W , q ∈ Q ⇒ q : W ↔ W , which is closed under superposition and group
isomorphic (with respect to the superposition) to the group G, i.e., there is a bijection P : Q ↔ G
such that q, q′ ∈ Q ⇒ P (q(q′)) = P (q′)P (q).

Definition 7.2. An inductor space [T, I] is said to be an inductor imprint (an I-imprint, an
imprint) of an action of a group G on a set W if there are an injection H : W →→ T such that HW
is an invariant set of all automorphisms of the space T and a bijection P : (aut[T, I]/HW ) ↔ G for
which (H−1×P )◦(HW ×aut[T, I]/HW ) = (W : G). In this case, we write aut[T, I]/HW � (W : G).
The set in the subscript under the slash stands for the restriction of the action of the automorphisms
to this set.

Theorem 7.1. Every action of a group G on a set W has an inductor imprint.

Proof. The construction of the imprint is similar to the construction in Theorem 6.1. The layers
Yg correspond to elements g of the group G. The cardinality of the ordinal p and of every layer Yg,
g ∈ G ∪ {0}, is equal to m = #W . Introduce some bijections r : W ↔ Sp and hg : Yg ↔ W . The
layers Yg, g ∈ G, have rigid induction Hp in the ordering hg. The layer Y0 is equipped with the loop
induction. Denote by x : g = y, x, y ∈ W , g ∈ G, the action of an element of a group on an element
of the set. The graph J is constructed on T = ∪Yg|g ∈ G by the arrows (z, x), where x ∈ Y0 and
z = z(g, x) = h−1

g (h0x : g−1) ∈ Yg. To an arrow (z, x), the inductor pair [x, {x; z}]I corresponds.
This completes the construction of the induction I. If v ∈ aut[T, I] and x ∈ Y0, then the value
v(x) must satisfy the condition hg(z(g, x)) = hq(z(q, v(x))) for some layers Yg and Yq. In this case,
there is an f = g−1q for which v(x) = x : f . Here the entire layer Yg is bijectively mapped onto the
layer Yq because the induction Hp is rigid. Therefore, for any x ∈ Y0, the action of v ∈ aut[T, I] is
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defined by the formula v(x) = x : f . If v1, v2 ∈ aut[T, I] and if f1, f2 ∈ G correspond to v1 and v2

by the above formula, then v2 ◦ v1 ◦ Y0 = h−1
0 ◦ (((h0 ◦ Y0) : f1) : f2) = h−1

0 ◦ ((h0 ◦ Y0) : (f1f2)).
This formula establishes an isomorphism aut[T, I] � (W : G). The image of the set W is the set Y0

with the injection h−1
0 and a bijection of the group v 
→ f .

Theorem 7.2. Any action of the group G on a set has an imprint in the class of topological
spaces and in the class of graphs.

The proof is similar to the proofs of Theorems 6.3 and 6.2 and uses the construction in the proof
of Theorem 7.1.

Definition 7.3. By an action W : G (inv = U) of some group G on a given set W with an
invariant system of subsets U (V ∈ U ⇒ V ⊂ W ) we mean a family Q of self-bijections such that
q ∈ Q& V ∈ U ⇒ q : W ↔ W & q ◦ V ∈ U and Q is closed with respect to superposition and a
group isomorphic to G with respect to superposition, i.e., there is a bijection P : Q ↔ G for which
q, q′ ∈ Q ⇒ P (q(q′)) = P (q′)P (q) .

In other words, an action of a group (on a set) with an invariant system of subsets is an action
of the group on the set such that every self-bijection takes any subset in a system into a subset in
the same system.

Definition 7.4. By the induced induction I/A on a subset A of an inductor space [T, I] we
mean the set of inductor pairs {[x,B]I/A |x ∈ A, B = C ∩ A, [x,C]I ∈ I} .

Definition 7.5. An inductor space [T, I] is said to be an inductor imprint (an I-imprint, an
imprint) of an action of a group G on a set W with invariant system of subsets U if it is an imprint
of the action with an injection H and the images of the subsets in U are a generating system of
inductors for the induced induction on HW . In this case, we write aut[T, I]/HW � W : G(inv = U) .

Lemma 7.1. An action of a group on a set with an invariant system of subsets W : G(inv = U)
is an action W : G(inv = tr(U)), where tr(U) = {A ∪ B | A,B ∈ U, A ∩ B �= ∅} .

Proof. Any bijection takes a union of sets into the union of their images and any intersection of
sets into the intersection of their images. Therefore, tr(U) is invariant together with U with respect
to any system of bijections.

Lemma 7.2. Any action of a group G on a set W with an invariant system of subsets U admits
an inductor imprint.

Proof. Let us use the construction in the proof of Theorem 7.1. The image of HW in this I-
imprint coincides with the layer Y0. This layer is equipped with the loop induction. Therefore, this
is not a desired imprint in general. Let us add another layer with a nongroup index YW and with
the corresponding bijection hW : YW ↔ W for T = ∪Yc |c ∈ G ∪ {0;W} ; T ′ = ∪Yc |c ∈ G ∪ {0} .
Let us complete the graph J with the arrows (w, x), w ∈ YW , x ∈ Y0, hW (w) = h0(x), where

w = w(x) = h−1
W (h0(x)). (7.1)

Here the induced loop induction on the layer Y0 is preserved. Write H = h−1
W . On the layer YW ,

define the I-pairs of the form [w, V ]I , where V ∈ H ◦ U and w ∈ V . Let us complete them by
the inductors of closure by the axiom of transitive union. By construction, the family of inductors
of this induction coincides with tr(U). By Lemma 7.1, this system of inductors is also invariant
with respect to the action of the group. In this case, the self-bijections of the layer YW correspond
under the automorphisms of [T, I] (by the mapping (7.1)) to the bijections of the layer Y0 in the
automorphisms of [T ′, I] given in Theorem 7.1. No automorphism can take a point of the layer
Y0 to a point of the layer YW and conversely, because the inductors of the layer YW are disjoint
from the layers Yg, g ∈ G. If the group G is nontrivial, then the layer YW is not isomorphic to the
layers Yg, g ∈ G, and they cannot be mapped into one another under automorphisms. Therefore,
the automorphism group of the space this constructed is isomorphic to the automorphism group
of the space in Theorem 7.1, and hence isomorphic to G. Using the mapping H as an injection
H : W →→ T , we obtain the desired imprint. Finally, if a homeomorphism of YW and one of the
layers Yg, g ∈ G, exists, then the group G is trivial, g = e, because these layers are rigid. In this
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case, one should delete the layer YW from the construction and set H = h−1
e . This trivially solves

the problem of imprint for the identity action.

Theorem 7.3. Every subgroup G of the homeomorphism group of a topological space (X|τ)
admits an inductor imprint with an invariant system of open sets. These imprints can be constructed
in the class of topological spaces.

Proof. The existence of an imprint follows from Lemma 7.2, W = X; U = τ ; H = h−1
W ;

H ′ = h−1
0 . One cannot pass to an imprint in the class of graphs in general by using an argument

similar to that in Theorem 6.2 because the induction on the layer YW in this construction is a
topological space and its reduction to a graph is impossible in general; however, the passage to the
class of topological spaces is similar to Theorem 6.3. To this end, one must extend the family of open
sets obtained in Theorem 6.3 by the family of sets of the form UH = {uV = H ◦V ∪H ′◦V | V ∈ τ},
where H◦V ⊂ YW , H ′◦V ⊂ Y0, together with the sets generated by the above sets by the axioms of
arbitrary union and finite intersection. Since a topology is closed with respect to these operations,
it follows that there are no new inductors on the layer YW under the canonical mapping of the
topology. On the layer Y0, under the passage from the loop induction to the discrete topology,
according to Theorem 6.3, all inductors of the form [x, v]I , v ⊂ Y0, where x ∈ v, necessarily occur,
but these do not influence the automorphism group because they are invariant with respect to any
bijection. The new induced inductors of the form H ′ ◦ V belong to this class of subsets and do not
change the induced induction [T, I]/Y0 . Therefore, the set of inductors [T, I]/Y0∪YW

thus obtained
is invariant with respect to the action of automorphisms representing the group G. The induced
induction is preserved on the other layers. Therefore, if the layer YW is not homeomorphic to any
layer of the form Yg, g ∈ G, then the property of inductor imprint of the action X : G(inv τ) is
preserved. The case in which the layer YW is homeomorphic to one of the layers Yg, g ∈ G, is treated
as in the proof of Lemma 7.2.

8. SPACES WITH CONIC INDUCTION
Definition 8.1. By a conic space Rc[n] we mean a space R

n with an induction for which
the generating system of inductors of a point y are cones representable in a system of Cartesian
coordinates x1, . . . , xn in the form 0 � (x1 − y1)2 − (x2 − y2)2 − · · · − (xn − yn)2, 0 � y1 − x1 � H,
H > 0.

The assumption |y1−x1| � H leads to the so-called biconic space Rb[n], the condition 0 � y1−x1

to the so-called full conic space Rfc[n], and, if no conditions on y1−x1 are imposed, then the space
is referred to as a full biconic space Rfb[n].

The corresponding automorphism groups are denoted, according to the structure of inductors,
by aut Rc[n], etc.

A conic space can be regarded as a vector space equipped with a system of spherical cones
obtained as all possible parallel shifts of a chosen cone. In biconic spaces, the cones are two-sided
with respect to the vertex. In nonfull spaces, along with full cones, cones of bounded height are
also considered. The parameter H defines this condition for a specific cone in the generating set.
The transitive union can produce diverse bounds of nonfull cones. The conic inductor spaces do
not belong to classes of graphs or topological spaces.

Remark 8.1. Using the axiom of transitive union, one can readily show that autRc[n] =
autRfc[n] and autRb[n] = autRfb[n].

Therefore, it suffices to study the automorphism groups for the classes of full spaces only. Distin-
guishing of the above four classes of spaces of conic type is related to applications to mathematical
modeling. The use of bounded cones (with the parameter H) defines a topology on the time axis in
models of mathematical physics [8, 12]. However, this is inessential for the purposes of the present
paper. In what follows, we consider only full conic and biconic spaces. We are interested in their
automorphism groups.

As was proved in [8], the affine automorphism group of a conic space coincides with the canonical
action of the Lorentz group (on the Minkowski space of corresponding dimension) extended by all
parallel translations, rotations, and reflections in the hyperplane of the spherical section of the cone,
and also by uniform dilations (multiplications of vectors by a positive number). Below we refer to
this action as an affine extension of the (action of the) Lorentz group and denote it by ALor[n] and
denote the abstract group by itself by GAL[n].
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Below we show that, for the dimensions 1 and 2, the full automorphism group is significantly
larger than its affine subgroup, whereas the full automorphism group coincides with the affine
subgroup beginning with the dimension 3.

Denote by ◦ the superposition of two actions on a set, by × the direct product of groups, by ⊗
the direct product of actions on the direct product of the corresponding sets (in the linear space this
is reduced to the direct sum ⊕ of the subspaces), and by Gaut[T, I] an abstract group isomorphic
to the automorphism group of the space.

Theorem 8.1. The group aut Rc[1] is formed by all positively monotone bijections of R
1, the

group autRc[2] is ((aut Rc[1] : Z1)⊗(aut Rc[1] : Z2))◦h2(2), where Z1 and Z2 stand for two genera-
tors of the two-dimensional cone, the action hn(i), i � n, on R

n is the inversion (the multiplication
by −1) of the xi axis, and, in particular, h2(2) makes a permutation of the generators of the cone
on R

2, the group Gaut Rc[2] is Gaut Rc[1] × Gaut Rc[1] × S2, where S2 = Ghn(i) stands for the
group of order two, aut Rc[n] = ALor[n] for n � 3, and Gaut Rc[n] = GAL[n] for n � 3.

Theorem 8.2. The group aut Rb[1] is formed by all monotone bijections of R
1, aut Rb[1] =

autRc[1] ◦ Rh(1), GRb[1] = GRc[1] × S2, where the action of Rh(n) is the reflection of R
n with

respect to the origin (the multiplication of vectors by −1), aut Rb[2] = autRc[2] ◦ h2(1) ◦ h2(2),
Gaut Rb[2] = GautRc[1] × Gaut Rc[1] × S2 × S2, autRb[n] = ALor[n] ◦ Rh(n) for n � 3, and
Gaut Rb[n] = GAL[n] × S2 for n � 3.

Proof. The actions of the groups aut Rb[n] and aut Rc[n] differ only by the direct additional
multiplication by the inversion of the axis of the cone, which corresponds to the coordinate x1

(this is conditioned by the corresponding symmetry of the generating system of biconic induction).
Therefore, Theorem 8.2 immediately follows from Theorem 8.1. The relations for the abstract
groups immediately follow from relations for the actions of automorphism groups. For this reason,
it suffices to carry out the proof of the relations for the automorphisms of the conic induction.

Case n = 1. In this case, the conic space is the “directed line:” a neighborhood of a point is the
left half-line in which this point is the right end. The continuous mappings in this induction are
left continuous functions. An automorphism which is a continuous self-bijection, can be only an
arbitrary strictly monotone continuous real function which is unbounded in all directions.

Case n = 2. In this case, the cone (the inductor of a point) is an angle with a vertex at the
point. The generators of the cone are the sides of the angle. The corresponding generators of all
cones (the inductors) are parallel. Under an automorphism, any generator of any cone passes to a
generator of the image of the cone. The mapping can take a generator either to the corresponding
generator or to the opposite one. Let us pass to the system of coordinates whose axes are parallel
to the generators with the origin at some point (0, 0) and with directions e and t. On the lines
of these vectors, the induction is induced by the directed lines. If U is an automorphism, then
either U(x, y) = U(xe + yt) = U(0, 0) + V (x)e + W (y)t, where V and W are automorphisms of
the directed lines or U(x, y) = U(xe + yt) = U(0, 0) + V (x)t + W (y)e, where V and W are mutual
homeomorphisms of the lines. With regard to the above set of automorphisms of a directed line,
this corresponds to the assertion of the theorem.

Case n = 3. To prove the assertion of the theorem, it suffices to show that all automorphisms are
affine, i.e., that the class of lines is preserved under the action (this is really sufficient because the
group of affine automorphisms of Rc[n] coincides with the extended action of the Lorentz group [8]),
or, in other words, that every automorphism takes any line to a line. Introduce some notions.

An I-cone is a cone which is the union of all inductors of a single point in Rc[3] (the inductor of
a full conic induction). A C-line is a line continuing a generator of an I-cone. A C-plane is a plane
tangent to some I-cone. A T-line is a line partially belonging to the interior of an I-cone. A T-plane
is a plane formed by lines parallel to a T-line. A P-plane is a secant plane for an I-cone. A P-line
is a line belonging to a P-plane. Correspondingly, we generally speak of C-objects, T-objects, and
P-objects.

Lemma 8.1. Any automorphism of a conic space Rc[n] is continuous in the topology of R
n.

Proof. Suppose that a sequence of points r(1), r(2), . . . converges to a point r. In this case, one
can construct a sequence of embedded I-cones (K(i)|i = 1, . . . ) with vertices at some points g(1),
g(2), . . . , and with heights H(1), H(2), . . . , where limi→∞ g(i) = r and limi→∞ H(i) = 0 and all
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points r(j), j � i, belong to the interior of the cone K(i). The only common point of all cones is
the point r. Applying an arbitrary automorphism u to the I-cones K(1), K(2), . . . , we obtain an
embedded system of I-cones (u ◦K(i)|i = 1, . . . ) with a single common point u(r). Here the images
u(r(j)), j � i, are placed inside the I-cone u ◦ K(i). This implies that limi→∞ u(r(i)) = u(r).

Lemma 8.2. Every P-line is the intersection of two C-planes.

Proof. Consider a P-line L. Choose a point r on L and place the vertex of the I-cone K
having no other intersection points with L there. Draw two distinct tangent planes to the cone
that contain L (recall that the dimension of the space is not less than three). Since every plane
tangent to an I-cone is a C-plane, this will prove the lemma. Let us prove that these planes always
exist for a cone and for a line passing through the vertex from outside. Consider the plane V of
the circular cross-section of the cone K. Two cases are possible: the line L can be either parallel
or not parallel to V. If the line L is parallel to the plane, then it is orthogonal to the axis of the
cone. In this case, there are two generators of the cone K, which are orthogonal to the line L. The
planes spanned by these generators and the line L are the desired tangent planes. If the line is not
parallel to the plane, then they have an intersection point, which we denote by s. Let the circle Z
be the section of the cone K by the plane V. Draw two tangents from the point s to the circle Z in
the plane V. Denote the points of tangency by a and b. Each of the lines sa and sb is tangent to the
cone K in one of these points. The lines ra and rb are generators of the cone. Therefore, each of
the planes of the triangles asr and bsr contains a generator and a tangent of the cone K, and these
lines intersect. Hence, these are tangent planes to the cone, and they meet along the line sr = L.

Lemma 8.3. Any automorphism takes any C-object to a C-object and any P-object to a P-object
of the same type. Any T-line is taken into a continuous line intersecting the interior of the I-cone
(we do not claim here that this image is a line).

Proof. By the definition of an automorphism, the image and the preimage of any I-cone is
an I-cone. Since any bijection is strictly monotone with respect to the embedding of subsets, the
boundary (the surface) of any I-cone is taken to the surface of the image. Every C-line is a line
of tangency of two I-cones one of which is placed inside the other (tangency along a generator).
This is an intersection of two surfaces of I-cones, which passes to a similar tangency, i.e., the image
of any C-line is a C-line again. In this case, every C-plane is taken to a continuous set consisting
of disjoint C-lines. Choose an arbitrary point r on an arbitrary C-plane B and draw a C-line L
through r along which the plane B is tangent to the cone K. Each line of this kind of the C-plane
is a tangent line of infinitely many I-cones whose vertices belong to L. Consider the set QL of all
I-cones of this kind. Their union KL = ∪QL is a half-space bounded by the plane B. Under our
automorphism, this union of cones is taken to a similar union, and the boundary of the half-space
is taken to the boundary of the image. Hence, the image of any C-plane is a C-plane. Thus, any
automorphism takes any C-object to a C-object of the same type.

By Lemma 8.2, the image of a P-line passing through the vertex of an I-cone K is the intersection
of the images of two C-planes, and, as was proved above, this intersection is a P-line because it
can be represented as the intersection of two C-planes external with respect to the I-cone given by
the image of K. Since all lines on a P-plane are P-lines, it follows that any automorphism takes all
lines on a P-plane into lines. Any three P-lines whose intersections define a triangle are taken by
any automorphism to a similar pattern. By the continuity (Lemma 8.1) and the bijective property
of any automorphism, the corresponding triangle defines a plane which is the image of the original
plane. All lines in the image are P-lines, and hence the image is a P-plane. The interior of an
I-cone passes under any automorphism to the interior of the target I-cone. Therefore, it follows
from Lemma 8.1 that any T-line is taken to a continuous curve passing through the interior of the
target I-cone.

Lemma 8.4. The automorphisms are affine on the C-objects and the P-objects.

Proof. For any P-plane, this was proved in the proof of Lemma 8.3. Since every P-line belongs
to some P-plane, it follows that the automorphism is affine on the line. On any C-plane tangent
to an I-cone (and hence not contained in the I-cone), all lines are either C-lines or P-lines. Each
of these lines is taken by any automorphism to a line. Thus, the automorphism is affine on any
C-plane. Since every C-line is contained to some C-plane, it follows that the mapping is affine on
any C-line.
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Lemma 8.5. Any T-object is taken to a T-object of the same type under any automorphism u
of a conic space.

Proof. Consider an arbitrary T-plane P . By definition, there is an I-cone K restricted with
respect to height by a circular section Z, and the intersection P ∩K consists of two generatrices L1
and L2 and the vertex A. The intersection L3 = P ∩ Z is a PP-line. By Lemma 8.4, uL1 and uL2
are generatrices of the I-cone uK which meet at the vertex uA of uK, and the image of the P -line
uL3 is a line and belongs to the plane uZ. Since the entire plane P can be represented as the union
of C-lines parallel to L1 and intersecting L2 and L3, it follows that uP is a T-plane. Thus, the
image of an arbitrary T-plane is a T-plane. Every T-line is the intersection of two T-planes and
meets the interior of any I-cone whose vertex belongs to the line. The property to enter the interior
of any cone of this kind is an invariant of any automorphism. The intersection of two T-planes is
taken to the intersection of their image planes. Hence, the image of an arbitrary T-line is a T-line.

End of the proof of Theorem 8.1. It follows from Lemmas 8.4 and 8.5 that, if the dimension
of the space is equal to 3, then all automorphisms preserve the class of lines. This means that all
the automorphisms are affine transformations of the vector space. Let n > 3. Note that the proof
for n = 3 did not use any mapping of the conic space onto itself. Moreover, we have proved that
a homeomorphism of any three-dimensional conic space is an affine mapping. Suppose that the
desired assertion is proved for n = m � 3. Consider the case n = m + 1 and proceed by induction.
Choose a basis: R

n = L{e0, e1, . . . , em}, where e0 is the axis of the I-cone. One can write out
the algebraic sum R

n = L{e0, e1, . . . , em−1} ⊕ L{e0, e1, . . . , em−2, em}. Each of the summands is
an m-dimensional conic space. Under any automorphism (or isomorphism) u, by the induction
assumption, the images of these subspaces are subspaces of the same type, and the mappings are
affine. The dimension of the space is preserved because the mapping u is bijective. If a line l ⊂ R

n

is given, then we can always choose e1 and e2 in such a way that l ⊂ L{e0, e1, e2}, and hence
l ⊂ L{e0, e1, . . . , em−1} (this is achieved, for instance, by a successive orthogonalization of the
triple of vectors e0, v, w − v, where w and v are any two distinct points on the line l). Therefore,
the image of ul is a line. This completes the induction, and thus proves the theorem.
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