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Preface 

The problem of time is difficult for investigation because in it as no other, it is difficult to view at the subject 

“from outside”. Nevertheless usual physical approach, that  is verification of a theoretical  idea on the base of 

testing the experimental consequences predicted by it, remains valid. Therewith the deeper theory, the wider 

range of its consequences, therefore the different researchers may find the different ways to the same summit. 

But in spite of obvious importance, up to now the nature of time, its irreversibility (or reversibility?), the cau‐

sality (real or conventional?) are not in the focus of the physical mainstream. The triumphal procession of mod‐

ern physics has just evaded these problems. One cannot say that the irreversibility problem is unacknowledged; 

its accepted solution reduces that irreversibility is a property of the physical systems, and in the most general 

view represents that time arrow is determined by the expansion of the Universe, pre‐determined by its origin, 

the Big Bang. So all the problems are driven  into one corner. With this they are banished from the sphere of 

everyday experience, but they do not become more intelligible. 

The brilliant discoveries of  twentieth century physics  like proven  instantaneous nonlocal  correlations or a 

possibility of wormholes remain the islands in the Ocean Incognita. The philosophers readily fill the wide gaps 

between the available experimental facts or the reliable theories. But recall the term “philosophic paradox”: if 

a philosophic question becomes to be subject of concrete science, this question ceases to be a philosophic one! 

In  contrast  to  that approach,  the  fundamental  irreversibility of  time  can be  taken as  the basis  for a new 

physical  approach.  Its  founder N. A. Kozyrev  called  this approach  “causal mechanics” or  “asymmetrical me‐

chanics”. His  rather simple  theory  (too simple  from point of view of  the physical establishment) predicted a 

number of absolutely new, but experimentally  testable phenomena: existence of  the pair  longitudinal  forces 

(“forces of causality”) in a gyroscope involved in the irreversible process, correlations of the distant irreversible 

processes without any local carriers of interaction and unusual time relation of these correlation which can be 

retarded, instantaneous and advanced, i.e. there is a surprising manifestation of reversibility in fundamentally 

irreversible  time.  Kozyrev  had  performed  very  extensive  series  of  experiments which  really  confirmed  the 

theoretical predictions, at least qualitatively. Of course these experiments were quite fine, although principally 

simple (again too simple from point of view of the physical establishment). I was lucky enough to observe most 

of Kozyrev experiment in his laboratory in 1970‐th, and in spite of deficit of rigour in some of them, as a whole 

they  impressed me very much and made  sure  that  regardless of  the  interpretation, a  really new domain of 

physical phenomena had been discovered. The fact that Kozyrev causal mechanics was not supported during 

his life is explained simply due to it was born too early. 

In  this book  I describe modern  theoretical and experimental approach  to  the same and  related problems. 

The progress in quantum mechanics has shed a new light on N. A. Kozyrev’s ideas and his experimental results. 

Irreversible  time  calls  for  careful  consideration of  the  concept of  causality  and  the method of  classical  and 

quantum causal analysis suggested by the author is described. Quantum mechanical development of the cau‐

sality concept turned out not only possible, but fruitful in many respects. The possibility of observation of the 

 III



 IV

future states as the existing reality demonstrated at the  last stages of Kozyrev research seems now not only 

real, but allowing  the certain applications. The quantum mechanical principle of weak causality admits avail‐

ability of the signals  in reverse time for the random processes. The macroscopic nonlocality equation reflects 

this  possibility.  The  series  of modern  long‐terms  experiments  has  revealed  availability  of  the  advanced  re‐

sponse of random dissipative probe‐processes  in  the  lab detectors  to  large‐scale dissipative heliogeophysical 

processes with big random component. The high level of advanced correlation and the large time shift allowed 

to set the forecast problem. This problem has been solved and the solution has successfully tested on all ob‐

tained experimental data of enough volume for series of the long‐term forecasts of solar and geomagnetic ac‐

tivity. 

I hope that the readers of bringing to their notice a book will accept it with interest, and, possible, it will be 

useful to them as an impetus for their own ideas and research. 

 

 

 

 

 

Sergey Korotaev 

August, 2011 
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Introduction 
 

The obvious reason of interest in the problem of time was and is its inexorable irreversibility. On the 
other hand the similarity of time and space co-ordinates had been noticed well before the relativity theory 
creation. The relativity has lent this similarity a dramatic completeness; a little difference has remained to 
give a place the causality principle. The commonly accepted paradigm brings the problem of time out of 
most tasks, deeming irreversibility as being a property of the concrete systems, but not a property of 
time—blessing all the basic physics equations are invariant with reference to the time sign change. From 
this point of view the sole really irreversible event occurred in the utmost distant past—it was the Big 
Bang. Since that time the relaxation to the equilibrium has been going, and that prescribes the observed 
time arrow in the all systems, while time itself is perfectly symmetric. On the other hand nobody denies 
the known T-noninvariantness of the weak interactions, i.e. time irreversibility occurring here and now.  

Nikolay Kozyrev (1908-1983) was one of them who held that irreversibility is an inherent property of 
time. It was formulated in the first and main of three axioms of his causal mechanics [1]. But he was the 
only to go by this way (though weakly formulating it) to the end. The fact is, by virtue of the known rela-
tion of the symmetries and conservation laws, accepting of the time asymmetry inevitably implies viola-
tion of the energy conservation. In the traditional paradigm such violation is assumed only at the moment 
of the Universe birth, and since then the energy has been conserving always and every where absolutely 
exactly. 

But the energy conservation is a usual empirical law established with a finite accuracy. Call attention 
to the interesting point: the experimental verification accuracy was particularly high for the practically 
reversible processes (with negligibly small dissipation). Although nowadays nobody performs the special 
experiments on verification of the energy conservation yet, the obvious violations would be, of course, 
noticed. But if we look at the wide range of the experiments, where such be it non-special organized veri-
fication occurs, we see that the greater dissipativity of a system, the rougher energy conservation is con-
trolled. Wherever the dissipation is the essence of process, e.g. in many of the biological processes, the 
energy conservation is assured technically with accuracy only of order 10%. Kozyrev, starting from the 
time asymmetry, arrived at the conclusion on availability of a new form of the energy—the energy of 
time itself. It is precisely that closes the conservation law. Therefore time becomes an active substance. 
That involves some interaction, or more precisely transaction of any irreversible, that is dissipative proc-
esses. 

Irreversible time calls for careful consideration of the concept of causality. That is why the name 
“causal mechanics” had been emerged. And this consideration had predicted a number of experimentally 
testable consequences. Kozyrev performed extensive series of the experiments which demonstrated un-
usual properties of the transaction through active time, for example, availability of instantaneous and ad-
vanced correlation of some dissipative processes. The latter means a possibility of observation of the fu-
ture as the existing reality. It is a striking fact in itself and logically—beginning with the most radical ac-
ceptance of time irreversibility, we come to such fantastic manifestation of reversibility! 

Causal mechanics was born not as a mental construction. It was challenged by some deep astrophysical 
problems (in particular of star energy sources), it has clear and very natural axiomatic, which through a 
few semiclassical theorems leads to the experimentally testable consequences, and it has a wide experi-
mental basis. But its creator fate was dramatic. For his ideas Kozyrev was awarded by 10 years impris-
onment in GULAG (1936-1946). Later he won world recognition for his astrophysical works and discov-
eries. But his causal mechanics was not accepted by most of physical community in due time because of 
weak formalization of the (semiclassical) theory and doubt of correctness of the experiments.  

But the situation became to change in 1990th. Direct classical application of the theory to the rotating 
Earth, where the time energy manifests itself via the forces of causality was developed [2,3]. Existence of 
these forces explains in detail the known (and seemed accidental) hemisphere asymmetry of the Earth 
figure, deep geological structure and atmospheric circulation. Modern formalization of the foundations of 
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causal mechanics, first of all—its concept of causality, has leaded to creation of the method of classical 
causal analysis with many the subsequent applications in basic physics, geophysics and astrophysics 
[4-14]. Next the quantum generalization of causal analysis has been suggested [15]. The causality pa-
rameters for the wide series of entangled states are computed. The results were compared with the stan-
dard measures of entanglement and degree of mixedness. The role of state asymmetry in quantum infor-
mation transfer was shown. The quantum causal analysis helped to understand Cramer principle of week 
causality [16] which admits extraction of information from the future without the classical paradoxes. 
Quantum insight in causal mechanics has allowed considering the distant correlations of any irreversible 
processes as the nonlocal ones originated from a macroscopic entanglement. The equation of macro-
scopic entanglement motivated by Wheeler-Feynman electrodynamics has been suggested, which turns 
out agree with the strict quantum mechanical solution at least for a simple model [17-21]. The experi-
mental setup including different types of nonlocal correlation detectors was designed [17-25]. The 
long-term experiments directed to detection in the solar-terrestrial relationships have been performed 
[17-21,24-29]. The possibility of long-term forecasting of the random component of solar and geomag-
netic activity on the advanced nonlocal correlations has been investigated. The forecasting algorithm, 
employing advanced correlations (that is signals in reverse time!), was suggested. Its efficiency has been 
proved on data of the long-term experiments in regime of the real forecast imitation with advancement up 
to four months. The accuracy of the obtained solar and geomagnetic forecasts is acceptable for all the 
practical purposes [30-33]. This book is devoted to that modern development of causal mechanics. 

In Chapter 1, first, the short review of Kozyrev’s idea and results is contained, and, second, the review 
of their direct classical applications are presented. 

The classical causal analysis formalism is described in Chapter 2. Both the theoretical and experimen-
tal aspects of its implementation are discussed. 

In Chapter 3 the extension of causal analysis to the quantum variables is considered. The question on 
the possibility of time reversal phenomena is arisen here in a very natural way. Application of causal 
analysis at the beginning is demonstrated to the symmetrical entangled states, where causality is absent, 
but nevertheless the quantitative characteristics of the mixed states can be obtained. Then the analysis of 
asymmetrical mixed entangled states is applied to the examples of increasing complexity, beginning with 
the illustrative obtaining of causality measure and ending with the nontrivial conclusions about causal 
connection nature depending on the external magnetic field and temperature, about rather complex causal 
connections in the many-parties systems, etc. 

Chapter 4 is dedicated to the macroscopic entanglement model and related questions of causality and 
reversibility. 

In Chapter 5 the experimental approach to study of macroscopic nonlocality is discussed and design of 
the experimental setup is described. 

The results of experiments on study of macroscopic nonlocal correlations, the signals in reverse time 
and their practical application to the forecast of large-scale random irreversible processes are expounded 
in Chapter 6. 

The author thanks Prof. M. L. Arushanov for collaboration in the classical aspect of this work, Prof. A. 
N. Morozov for kindly presented his experimental data and theoretical discussion, Dr. J. V. Gorohov for 
construction and maintenance of the experimental setup, V. O. Serdyuk for data processing and devel-
opment of the forecasting algorithm, V. A. Machinin and A. V. Novysh for participation in the experi-
ments, and E. O. Kiktenko for fruitful collaboration in development of quantum causal analysis. 
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Chapter 1. Kozyrev Causal Mechanics and Its Application 

1. Kozyrev Causal Mechanics and Its Application 
 
1.1. Kozyrev’s Idea and Results 

 
Any naturalist, not limiting himself artificially by bounds of his peculiar tasks and thus not passing 

over the difficult universal physical problems, must fall to thinking on concordance of time reversibility 
in the basic physical theories and visible, one can say flagrant irreversibility of the real World. Any solu-
tion of this problem gets into one of two classes, namely: 1) irreversibility is the property of the system, 
and 2) irreversibility the property of time. The solutions from the former class are inevitable particular at 
variance with universality of the really observed irreversibility. However the most custom modern views 
are such exactly: irreversibility arises owing to incomplete description, i.e. it is the property of the system, 
including an observer. The solutions from the latter class on the strength of Nother theorem, lead auto-
matically to violation of the energy conservation low. If we interpret this violation as expanding of the 
low bounds, then the energy of time arises. It is just the heart idea of causal mechanics suggested by Ni-
kolay Kozyrev [1]. 

So Kozyrev’s construction of time was based on its fundamental asymmetry. However, not only gen-
eral logic of a naturalist had led him to the problem of time, but also reflection on the concrete astro-
physical problems. The most important problem of such kind is the question on the energy sources of the 
stars. Having computed the parameters characterized state of star’s interior (the temperature, density and 
energy emission), Kozyrev has statistically reliable shown, that in the state space almost the all stars are 
on the free cooling surface. It means that there are no any mechanisms of energy emission independent of 
the heat relinquishing. In particular (this question has especially been considered) the thermonuclear re-
actions can not be the energy source. The Kelvin-Gelmgolts mechanism has proved to be useful, but it is 
not acceptable, because of too short time scale. Kozyrev conclusion is in full contradiction with the con-
ventional theory of thermonuclear mechanism of star fire, but it has nowhere been refuted. It has also 
been shown by Kozyrev, that planetary energy source is close to the star one. As a result he concluded 
that only time itself might be the energy source. Preventing stars to come in the equiponderant state, the 
course of time is the source of their energy. Therefore, time, in addition to the known geometric proper-
ties has some active ones. But it was found extremely difficult to obtain these properties by solving the 
inverse problems, and Kozyrev had suggested development of his concept by usual deductive way. 

He had formulated the following 3 axioms: 
1) Time has a specific property that distinguishes the causes from the effects and can be called the di-

rectionality or the course. This property defines the distinction between the past and the future. 
2) The cause and the effect are always separated in space. Thus, there is as much small as is wished 

0x   between them. 
3) The cause and the effect are always separated in time. Thus, there is as much small as is wished 

0t   between them. 
Then Kozyrev had introduced a fundamental conception of the course of time : 2c

2
2c x t ae    .                               (1.1) 

It has sense of the velocity of causal-effect transition at the level of an elementary link, that is, at the 
microlevel. It has been proven that c2 is a pseudoscalar, that is, c2 is the linear velocity of a rotation. 
Kozyrev also related c2 with Plank constant and the elementary charge, where a is a dimensionless coef-
ficient. Note than the classical limits of causal and quantum mechanics coincide: 

20t c     0 .                          (1.2) 

Next, Kozyrev has proved the theorem, according to which in the gyroscope, excited by any irreversi-
ble process of the enough energy, with the cause  and effect Y X , there are new (unknown in classical 
mechanics) additional forces XF  and YR , acting along the axis of rotation : j
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2

cosX X

u

c
  F j F ,                              (1.3) 

2

cosY X

u
j

c
 X   


R F F .                           (1.4) 

They were called the forces of causality. u is the linear velocity of gyro rotation, XF  is the inelastic 
force of the cause, affecting on the effect: X Y Y Xt t     F F p p , YF  is the force applied on the 
point ,  is momentum, Y p   is the angle between  and Xj F . For the force of causality to be 
measured in the macroscopic system it is necessary that cause and effect had a finite arm relatively the 
axis of the gyro. The momentum of the system does not change, but the energy of the system changes! In 
addition, if there is cross space of the points X  and Y , the angular momentum of the system emerges. 

Kozyrev had performed series of the experiments with the excited gyros, really discovered the forces 
of causality and confirmed the theoretical estimation of course of time value (and determined it’s a priori 
unknown sign)   6

2 2.2 0.1 10c      m/s. The experiment repeated many times at different perform-
ance (vertical and horizontal orientation of the gyro axis), different positions the cause and the effect, 
different kinds of the exciting dissipative process (providing inelastic interaction the gyro and the sup-
port). 

He also had performed other series of the experiments in which the forces of causality of the rotating 
Earth were revealed. These forces proved to be parallel to the Earth axis and dependent on the latitude, 
with the change of the sign near 73˚. Kozyrev supposed that asymmetrical figure of the Earth was formed 
namely by the forces of causality. 

On the next stage, Kozyrev had conducted another series of experiments on correlation of any irre-
versible that is dissipative processes through the active time. The theoretical background of these ex-
periments was weaker, rather intuitive. Nevertheless this background had convincing predictability. 
Shortly, Kozyrev had invented several types of detectors, included some probe dissipative processes, re-
spondent to the artificial lab and natural astrophysical source-processes. The sign of detector response 
dependent on the sign of the entropy change in the source. It means, by Kozyrev, that processes progress 
not only in time, but and with help of time. Specifically, his experimental results can be formulated in the 
following statements: 

1) A new type of transaction between the dissipative processes of any nature exists; 
2) This transaction transmits the energy, the spin, but not the momentum; 
3) The energy of transaction directly related with the entropy production and inversely related with the 

squared distance; 
4) The transaction is screened by the matter, but the screening properties of the matter do not coincide 

with such properties for the electromagnetic field; 
5) The transaction can have positive, zero and symmetrical negative time lapse. 
The last point says on the possibility of observing the future as the existing reality! This statement is 

explained as follows. As the Universe is projected on to the time axis in a point, the transaction via time 
is interaction through a spacelike interval. Formally it admits the time shift equal to ± classical retarda-
tion. Combination of the retarded and advanced signals may lead effectively to the instantaneous interac-
tion. 

The statement (5) directly concerning the main topic of this book was late, final Kozyrev result, so was 
not contained in his single paper on causal mechanics in English [1]. The relevant astrophysical experi-
mental results [34,35] and their theoretical explanation [36] were published only in Russian. There is a 
review of these works in English in Reference [37]. Kozyrev elaborated [36,37] that time interaction in 
actually occurs through zero interval, while both time directions are allowed. In particular it can lead to 
effectively instantaneous correlation of some processes without invoking of the superluminal speed. At 
this point he independently and exactly converged with the explanation of instantaneous (through zero 
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interval) quantum nonlocal correlation suggested by Cramer in the same year [16]. 
It is extremely interesting, but it needs more careful theoretical consideration, while the first part of 

Kozyrev theory, concerning the force of causality, admits straightforward classical development. And it 
was the first step in my own work together with M. Arushanov [2]. 

 
1.2. Application of the Force of Causality to the Rotating Earth 
 

This application was motivated by rather extensive number of the geophysical facts, difficulty ex-
plained from the conventional standpoints. Indeed the geoid has a form of the cardioidal ellipsoid with 
the depression at the South Pole and the prominence at the North one. The latitudinal distribution of the 
land and sea is also asymmetrical and described by the cardioid opposite to the geodesic one. And this 
distribution persists over geological time scale in spite of the continental drift.  

In the atmosphere there is a heat asymmetry of the hemispheres. The temperature in the North hemi-
sphere is 3˚ higher than in the South one. There is an asymmetry of the intertropic convergence zone and 
so on. 

The similar asymmetry is on the other planets, for instance the Mars. All these facts might be ex-
plained by some low-governed asymmetrical forces, but there are no such forces in classical mechanics. 

Let us consider the force of causality on the Earth. From Equations (1.3, 1.4) follows: 

2

cos sin
r

g
c

   F j ,                             (1.5) 

where ω is the angular velocity, r is the distance from the center of the Earth, ρ is the density, g is the 
gravity acceleration, φ is the latitude. The force F  acts over the all points of the Earth parallel to axis to 
the North. Conservation of the momentum requires force of reaction  to be directed parallel to the 
axis to the South: 

R

dV   dV F R .                                (1.6) 

The integrals are taken over the all volume of the Earth. A solution of this integral equation is the con-
stant: 

2π

r

c


 R j .                                  (1.7) 

Resulting sum F R  is Q : 

2

1
sin 2

2 π

r
g

c

   
 

Q j
1   .                            (1.8) 

For geophysical interpretation of this formula it is essential that  has opposite sign for the causes 
and effects. We may simply determine the positions of the cause and effect objectively by direction of the 
energy flux, which is directed always from the cause to the effect. The solid Earth losses the heat to the 
environment and therefore may be considered as the region of the causes. On considering the system the 
solid Earth-atmosphere, we see that atmosphere is in the region of the effects. In our formula the sign is 
selected for the causes therefore it should be taken with its sign for the solid Earth and opposite one for 
the atmosphere. 

Q

In Figure 1.1 the latitudinal distribution of the force Q is shown. Positive direction is parallel to the 
Earth axis to the North Note, that force changes its sign at the latitude 71˚, close to Kozyrev experimental 
result. 

As the vertical QR horizontal Qφ component of a force (1.8) play in geophysics essentially different 
roles they should be considered separately: 
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Figure 1.1. Zonal distribution of the force of causality (for ρ = 1 kg/m3). 
 

2

1 1
sin 2 sin

2 πR

r
Q g

c

     
 

 ,                             (1.9) 

2

1 1
sin 2 cos

2 π

r
Q g

c
     

 
 .                           (1.10) 

In the geological time scale the results of those forces can be noticed via their divergences: 

2

1 1
sin 2 sin

2 πR
g r

divQ g
c

   


  
 


                        (1.11) 

2

2
cos 2 cos sin 2 sin sin

π
divQ g

c
           

 
                   (1.12) 

The + is for the North hemisphere, the – for the South one. The signs everywhere are taken for the 
Solid Earth. 

In the Solid Earth, at the process of mantle differentiation, extraction of lighter granitoid fraction goes 
quicker under condition of vertical stretching. Therefore zones positive divQR are favorable for forming 
of the continental crust. We may expect concentration of the continents in the zones with positive divQR 
and the oceans in the zones with negative one. 

On the other hand, the horizontal component Qφ must bring an additional contribution to the continen-
tal drift. Therefore we may expect concentration of the movable continents in the zones with negative 
divQφ and deficit in the zones with positive one.  

Next, the geodesic figure of the Earth is an equipotential surface. The potential of the force of causality 
U: 

2

2

1 1 1
sin 2 sin

3 2 π g r

r
U g

c

    
    
 

                        (1.13) 

has latitudinal distribution opposite to QR and divQR , and this distribution describes the observed asym-
metry of the Earth the figure with the depression at the South pole and the prominence at the North one. 
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In Figure 1.2 those theoretical latitudinal distributions are shown together with the real distribution of 
the land and ocean. The solid line is percentage of the land. The dashed line is divQR . We see that dashed 
and solid curves nicely coincide, to detail! So, the theory gives physical explanation of asymmetrical dis-
tribution of the land and ocean seemed accidental before. 

The dotted line is divQφ. It is evidently clear that continental zones qualitatively correspond to its nega-
tive value, while the oceanic zones correspond to its positive one. 

Thus, both vertical and horizontal components of the force of causality are responsible for the ob-
served geological asymmetry of the Earth. 

On the other hand, in atmospheric physics there is well known unsolved problem: why is the inter-
tropic convergence zone shifted to the north from the equator? According to the classical theory it must 
be exactly at the equator. In Figure 1.2 it is seen, that divQφ has break at the equator and for the atmos-
phere it is negative to the North. There the convergence zone must be shifted to the North. 

Next, the force of causality is remarkable by the fact that it has in addition to the usual potential part, 
also the solenoidal part. It is the non-conservative force, namely at the expense at time energy! The ex-
pressions of  are, for the solid Earth: rotQ

2

4
2 sin 2 cos sin cos 2 cos

π g r

rot g
c

      


    
 

Q i ,             (1.14) 

and for the atmosphere: 

2

3
sin 2 cos sin cos 2 cos

2 π

3

g const

rot g
c

      


     
 

Q i .              (1.15) 

In Figure 1.3 the rotor latitudinal distribution is presented, the solid line—for the solid Earth, the 
dashed line—for the atmosphere. 

In the solid Earth the rotor determines intensity of the shift deformation. The extrema of the solid line  
 

 

Figure 1.2. Zonal distribution of the land (1), vertical component (2), divergence of vertical (2) and horizontal (3) 
components and potential (2) of the force of causality (for ρ = 1 kg/m3). 
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Figure 1.3. Zonal distribution of the rotor the force of causality in the lithosphere (1, g r ) and in the atmosphere 
(2, g const ) (for ρ = 1 kg/m3). 
 
correspond to the well known in geology critical parallels ±35˚ and equator. The parallels ±35˚ of the 
continents are the orogenic zones. The 0˚-parallel is expressed as the global fault zone and called by ge- 
ologists the equatorial shift zone. 

In the atmosphere, the rotor determines intensity of the meridianal circulation. From the dashed line it 
is evident that in the atmosphere the positive values are prevailed. That means existence of the transport 
directed from the South hemisphere to the North one in the lower layers and the opposite one in the upper 
lagers. As a result the mean temperature near the Earth surface must be higher in the North hemisphere 
that in the South one. 

Thus, causal mechanics explains number of the important facts in global geology and meteorology. 
Recently it has been demonstrated that inclusion of the force of causality into hydrodynamic equation 
system leads to improving of exactness of the numerical long-term whether forecasts [3]. In addition 
from my viewpoint it is important to put into operation the force of causality in dynamics of the Earth 
core, where it may play essential role in generation of the magnetic field. Indeed, violating symmetry 
only the force of causality can naturally violate the ban imposed, by Cowling theorem on the field gen-
eration by any axial-symmetric movement. 
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Chapter 2. Classical Causal Analysis 

2. Classical Causal Analysis 
 

In spite of the fact, that principle of causality is widely used in physics, it does not mean more than re-
tardation of the effect relative to the cause. However the retardation is necessary but not sufficient condi-
tion of the causal connection (“Post hoc non est propter hoc”). But what is a cause and what is an effect 
remains formally indefinite. Meanwhile in the simple situations we usually well realize what is a cause 
and what is an effect, not measuring a retardation, but only implicating it (e.g. without any measurement 
of the retardation, it is obvious causal-effect relation of the current in the lamp and photocell circuits). In 
the complicated situations, in the systems with feedbacks, usual intuitive understanding of causality may 
lead to the confusions, and hence the desirability of its formalization is obvious. The fact that in the sim-
ple situation location of the causes and effects is clear without retardation measuring indicates that these 
conceptions are asymmetrical in themselves. The problem is to define this asymmetry formally and not 
invoking the time relation, which has to be introduced after the definition as an axiom. From the solution 
of this problem originally directed to formalization of Kozyrev’s causal mechanics, the method of causal 
analysis was born, turned out to be useful in various classical applications. It was found fruitful in the 
construction of the models of complicated systems with feedbacks by experimental data, as well as in the 
estimation of the influence of noise-forming impacts in the real open systems. 

Consider the classical variables A and B describing the respective subsystems of the bipartite system 
AB, their Shannon marginal and conditional entropies: 

     

   

2
1

2
1

log ,

( ) log ,

J

j j
j

K

k k
k

S A P A P A

S B P B P B





 

 




                             (2.1) 

       

       

2
1 1

2
1 1

log ,

log ,

K J

k j k j
k j

J K

j k j k
j k

S A B P B P A B P A B

S B A P A P B A P B A

 

 

 

 

 

 

k

j

                    (2.2) 

where    ,  j kP A P B  are the probabilities of j-th (k-th) levels of A  and  respectively; B  j kP A B , 
 k jAP B  are the respective conditional probabilities. Define the following parameters: the marginal 

  and conditional   asymmetries: 

 
 

 
 

,  0 ;  ,  0 ;
S B AS B

S A S A B
                              (2.3) 

and the independence functions: 

 
 

 
 

,  ,  0 1.B A A B

S B A S A B
i i

S B S A
i                         (2.4) 

Meaning of the independence functions is enough transparent: at 1B Ai  , B is independent of A , at 
0B Ai  ,  is one-valued function of B A . In other words, the values 1 i  determine the unilateral de-

pendences of the variables. The direct and inversed independences must coincide only in the limiting  
case: 1 1B A A Bi i   . 

Next introduce the causality function  : 

,  0 .
B A

A B

i

i
                                   (2.5) 
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The name is derived from the particular values of  . 0  :  is the one-valued function of B A , 
but not the reverse. It is possible to interpret that as the utmost irreversible process A B . 1  : A  
and  to the same extent depend on one another, that is naturally to identify with absence of causality. B
   : A  is one-valued function of , but not the reverse. It is possible to interpret that is the utmost 
irreversible process . 

B
B A

Consider the space of parameters ,  ,  B Ai   (     is equivalent to (2.5)) displayed in Figure 
2.1. In this space it is possible to obtain the classification of any type of dependence of  on B A . Every 
type is imaged by a point. Analyzing the limiting cases and using the reversibility of information: 

       I S B S B A S A S A B    ,                            (2.6) 

it is easily to prove, that the forbidden regions are: 1) the subspace 1,  1   ; 2) the subspace 1  , 
1  ; 3) the plane 1   except the line of intersection with the plane 1  ; 4) the plane 1   ex-

cept the line of intersection with the plane 1   and except the line of intersection with the plane 
0B Ai  ; 5) the plane 0   except the axis segment  0,1  and axis B Ai ; 6) the plane 0   ex-

cept the axis B Ai ; 7) the plane 0B Ai   except the line 1   and axis segment  0,1 ; 8) the plane 
1B Ai  ; except the line 1  ; 9) the plane 1  , except the axis B Ai , line 1B Ai   and line 

1   . 
In the allowed space it is possible to separate out, on parameter meaning grounds, the following re-

gions: 
 Subspace of normal causality: 1,  1,  1     . 
 Subspace of inversed causality: 1,  1,  1     . 
 B-constant line: B const  independently of A . 
 One-valued function line: 0,  0,  0 1B Ai      . Here   0S B A  , i.e. B  is fully determined 

by A , but not reverse. 
 

 

Figure 2.1. Classical entropic diagram (IC is normal causality, IIC is inversed causality, dotted line is the B-constant 
line, thick solid line is the one-valued function line, fine dashed line is the independence line, thick dashed line is the 
adiabat, circle is the mutually one-valued function point).  
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 Independence line: 1,  1B Ai   . 
 Mutually one-valued function point: ( 0,  1B Ai     ). Here     0S B A S A B  . 
 Adiabat: 1   , that corresponds to the isentropic process.  

It is sufficiently for the formal definition of classical causality.  
Definition 1: The cause A  and the effect  are variables for which B 1  . 
Analyzing meaning of   it is not difficult to see that our definition includes usual intuitive under-

standing of causality (at least with an eye physicist’s intuition). Indeed, if we say that A  is the cause 
and  is the effect, we keep in mind fully or partly determined dependence of  on B B A , such that 
inversed dependence is absent. Our definition allows refining: the inversed dependence is less than direct 
one and how much. The causeless functional and statistical dependences are also known. We neatly fix 
this class: 1  . If, having studied statistics of the arbitrary denoted variables A  and , we find B

1  , it simply means that  is the cause and B A  is the effect. Besides full formality, our definition 
has an obvious advantage of the quantitative measure over common used the qualitative one. On theo-
retical and multiplicity of experimental examples of the classical problems (e.g. [5-14]) it had been 
shown that such formal definition of causality did not contradict its intuitive understanding in the simple 
situations and could be used in the complicated ones. 

Our definition allows formulation of the axiom of classical causality as follows: 

1 0,  1 0,  1 0              ,                   (2.7) 

where τ is time shift of  relative to B A . 
Note, that 1 1,  1 1         , (the reversed is wrong, that is why   can not be used for 

the definition of causality). This necessary condition is a manifestation of 7-th Shannon theorem [38] on 
decrease of the entropies from a channel input  A B  to its output  B A . 

Consider an elementary cause-effect link from information exchange standpoint. According to the 
theorem about noisy channel capacity, the upper limit of information reception rate in  from B A  is: 

   
 

1
sup A B

S B S B A

t S B





 ,                               (2.8) 

where t  is duration of an elementary signal, the numerator is maximized by variation of the A  dis-
tributions. Replacing the rate (2.8) by the lower limit of time and using (4), we have: 

inf
1A B

B A

t
t

i


 


.                                  (2.9) 

In a like manner for the reversed transfer: 

inf
1B A

A B

t
t

i


 


.                               (2.10) 

By the condition | |1 1 1B A A B A B Bi i t t A        

t

. The finite difference of times (2.10) and 
(2.9) means that in any time lapse the effect obtains from the cause more information than the cause does 
from the effect. Information excess in the effect means the irreversibility of information flow. Than time 
of information excess reception  is: 

1 1

1 1A B B A

t t
i i


 
  
   




.                            (2.11) 

Supposing that the subsystem A and B are separated by some finite effective distance , one can de-
termine the linear velocity of irreversible information flow 

r
2c r t    (the notation follows the tradi-

tion of Reference [1], where originally, although in less rigorous terms, the course of time pseudoscalar 
 of the same meaning was introduced): 2c
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     
 2

1 1 1 1

1 1

A B B A B A B A

A B B A B A

i i i i
c k k

i i i





   
 

 
,                 (2.12) 

where k r t  . It is easy to see that the sign of  is mutually one-valued related with the value of 2c
  relative to 1: 

2 2 21 0,  1 0,  1c c c            ,              (2.13) 

therefore it is possible to replace   by c  in the causality definition and axiom. 2

The causal analysis apparatus has been generalized to the causal network in the multipartite system [9]. 
The influence of the different kinds of noise-forming impacts from the non-controlled environment on all 
the parameters ( , , , ,B A A Bi i   ), the possibilities of other classical entropy definitions different from 
Shannon one as well as the foliated spaces of the probability definition have been analyzed [14]. The 
method has been tested on the problems of classical electrodynamics [5-8] and on data of various classi-
cal experiments (e.g. [6-14]). 
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3. Quantum Causal Analysis 
 
3.1. Kernel of the Method 

 
For the quantum variables von Neumann entropy is used. Instead of Equations (2.1) and (2.2) we have: 

   2 2Tr log ,  Tr logA A B BS A S B       ,                     (3.1) 

           ,  S B A S AB S A S A B S AB S B    ,                 (3.2) 

where   2Tr ,  Tr ,  Tr logA B AB B A AB AB ABS AB         . Note, that although the conditional entro-
pies can be in principle directly calculated through the conditional entropies by analogy with Equations 
(2.2) [39], practically it is simple to calculate them indirectly according to Equations (3.2). 

For the entangled states the conditional entropies can be negative [39,40]. Therefore     , 
1 1i   ,     . In particular, for the bipartite states from Schmidt decomposition it is follows 

1,  1,  1,  1.B A A Bi i         The entropic diagram is extended (Figure 3.1). Besides the two clas-
sical subspaces C the four quantum ones Q are allowed: 

IC  0 1  , 0 1  , 0 1B Ai  , 0 1B Ai  , 2 0c  ; 
IIC 1    , 1    , 0 1B Ai  , 1    , 2 0c  ; 
IQ  0 1  , 1    , 1 0B Ai   , 1    , 2 0c  ; 
IIQ  1    , 0 1  , 1 0B Ai   , 0 1  , 2 0c  ; 
IIIQ 0 1  , 0   , 1 0B Ai   , 0   , 2 0c  ; 
IVQ 1    , 0   , 0 1B Ai  , 0   , 2 0c  . 
However in the 3D diagram of Figure 3.1 it is difficult to show the demarcation of the allowed sub-

spaces. For their indication invoke the fact that the independence function B Ai  can be represented as  
 

 

Figure 3.1. Quantum entropic diagram.  
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follows: 

 
 

1

1B Ai
 
 





.                               (3.3) 

In the subspaces IC, IIC and IVQ 0 1B Ai  , that according to Equation (16), brings to the system of 
two inequalities with respect to ,  . Their solutions in the form of sections B Ai const  are presented 
in Figure 3.2(a). The allowed subspaces are adjacent to the border planes. In the subspaces IQ, IIQ and 
IVQ 1 0B Ai   . The solutions of corresponding couple of the inequalities are presented in Figure 
3.2(b). The allowed subspaces are separated from the part of border planes by the hyperbolic surfaces. 

At the quantum level the value of   is insufficient for distinguishing the cause and effect. But by ref-
erence to correspondence between 2c  and   in both the classical subspaces and necessary condition of 
the 7-th Shannon theorem obeying in all the six subspaces: 2 0 1c    , 2 0 1c     it is possi-
ble to give the definition of causality appropriate for the quantum variables. 

Definition 2: The cause A  and the effect B  are the subsystems for which 2 0c  . 
Then, introducing the demand of the effect retardation  , we can formulate the axiom of strong cau-

sality, embracing local and nonlocal correlations, as follows: 

2 2 20 0,  0 0,  0.c c c                          (3.4) 

Notice, that nonlocal correlations are often treated as instantaneous and causeless ones. Our approach 
includes such treatment, but only as a particular case. 

The axiom (3.4) is the principle namely of strong causality. Cramer was the first to distinguish the 
principles of strong and weak causality [16]. The strong causality corresponds to the usual condition of 
retardation of the effect relative to the cause. Without this axiom we have the weak causality. The weak 
causality corresponds only to nonlocal correlations and implies a possibility of information transmission 
in reverse time, but only related with unknown states (hence “the telegraph to the past” is impossible). 

Equations (2.8)-(2.12) remain true by virtue of the parallelism of classical and quantum information 
theory [40]. A justified in Reference [41] interpretation of entanglement of a quantum system as the re- 
 

 
(a)                                           (b) 

Figure 3.2. The allowed subspaces in the sections B Ai const : (a) the subspaces IC, IIC and IVQ; (b) the subspaces 
IQ, IIQ and IIIQ. 



Chapter 3. Quantum Causal Analysis 

 21

source serving for information transfer through it, gives them the additional physical meaning. Specifi-
cally in Reference [41] it has been proven that negative conditional entropy is “an amount of information 
which can be transmitted through <the subsystems>1 and 2 from a system interacting with 1 to another 
system interacting with 2. The transmission medium is quantum entanglement between 1 and 2.” Causal-
ity characterized by 2c  value reflects the asymmetry of this process (the greater causality is expressed 
by the less 2c ). 

But though defined by Equation (2.12) 2c  with accuracy to the coefficient k  is of great interest by 
itself, it is desirable to show the way of its full determination for the natural processes. For this there is no 
remain t  to be duration of “an elementary signal”, that is pertinent only for a technical channel. Since 

t  in any case plays a role of some elementary time it is natural to suppose it, according to Reference 
[42] to be time of brachistochrone evolution. In the case of time independent Hamiltonian this time is 
easily expressed explicitly: 

2
t







,                                    (3.5) 

where 2  is the difference between the largest and smallest eigenvalues of the Hamiltonian and   is 
the length of geodesic (according to Fabini-Study metric) connecting the initial and final states. If they 
are orthogonal, π  . In realistic Hamiltonian   depends on distance r  and k  becomes definite. 
It is readily shown [4] that for the simplest Coulomb interaction 2ek   , that corresponds to Kozyrev 
order estimation of с2 obtained from the semiclassical reasoning.  

To keep the examples described bellow from becoming too involved; we shall restrict ourselves by cal-
culations of 2c  with accuracy to 1k  . Only in the last example of Section 3 I shall demonstrate the 
more precise estimation with regard to t , which variable dependent on eigenvalues of Hamiltonian 
(remaining 1r  ). 

 
3.2. Symmetric States 
 

By the symmetric two-partite states are meant the states with equal subsystem entropies:    S A A B , 
1     , 2c  . The causality is absent (adiabatic state connection). However the value 

B A A Bi i  is finite and can be related to the mixedness measures 2Tr AB  or  S AB  and to the standard 
entanglement measure-concurrence C  [43]: 

 1 2 3 4max ,0C        ,                            (3.6) 

where i  are eigenvalues of the matrix  . Spin-flip matrix   is defined as: 

   y y y y        .                                  (3.7) 

I snow below that employment of causal analysis make sense, naturally, only for the mixed states. At 
the beginning I consider the elementary systems, when mixedness emerges as a result of extraction of the 
two subsystems from a three-partite pure state, thereupon—more containable situations, when the mixed-
ness is a result of interaction with a non-controlled environment. Since such interaction leads to decoher-
ence, analysis of these situation we shall begin with the basic mechanisms of decoherence—depolarization 
and dephasing (dissipation, which may lead to the asymmetry is considered in Section 3.2.1). Next we 
consider typical mixed states in their initial and asymptotic species (after long-run dissipation). 

 
3.2.1. Pure States 

The entropic symmetry is evident from Schmidt decomposition. Consider the arbitrary pure states: 

00 11    ,                                (3.8) 
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or 

01 10    ,                              (3.9) 

where 
2 2

1   . Since the state is pure, 2Tr 1AB  ,   0S AB  , concurrence C  varies according 
to ratio of   and  . But at any nonzero   and   the independence function is constant: 1B Ai   . 
Therefore for the pure states the causal analysis is of no interest. 

 
3.2.2. Greenberger­Horne­Zeilinger State 

It is known, that Greenberger-Horne-Zeilinger (GHZ state): 

 1
000 111

2
GHZ                              (3.10) 

is marked by that in spite of the maximal entanglement of three particles (ABC), the pairwise entangle- 

ment is absent: 0C  . The two-partite state is mixed: 2 1
Tr

2AB  ,   1S AB  . Therewith 0B Ai  .  

The entanglement is absent but the particles A  and B  are maximally classically correlated. 
 
3.2.3. W­State 

 1
001 010 100

3
W    .                         (3.11) 

Similar to GHZ state, W-state is entangled three-partite state, but the pairwise concurrence 
2

3
C   

(moreover, (3.11) and in general N-partite W-state represents the case of arranged in pairs and equal en-
tanglement of the all N particles [44]). The mixedness of the two-partite subsystem is somewhat weaker  

than for GHZ: 2 5
Tr

9AB  ,   2 2

1 1 2 2
log log 0.918

3 3 3 3
S AB     . However, likewith GHZ state: 0B Ai  . 

 
3.2.4. Depolarization 

Depolarization reduces to the following transformation [45,46]: 

0 0 (1 ) 0 0 ,
2

1 1 (1 ) 1 1 ,
2

1 0 (1 ) 1 0 ,

0 1 (1 ) 0 1 .

I
p p

I
p p

p

p

  

  

 

 

                         (3.12) 

where 0 1p   is decoherence degree. Take the singlet for the initial state: 

 1
01 10

2
   .                          (3.13) 

And let us assume that only the second particle ( B ) is depolarized. The depolarized density is: 

     1 1
01 01 10 10 01 10 10 01 00 00 11 11

2 4 2 4AB

p p p             
   

  (3.14) 

In spite of the fact that only one particle is depolarized, both the reduced densities are equal to each 
other, i.e. the system is symmetric: 
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 1
0 0 1 1

2A B                           (3.15) 

On finding the eigenvalues, we obtain: 

  2 2

3 3 3
log 1 log 1 ,

4 4 4 4

p p p p
S AB

          
   

               (3.16) 

 

    1S A S B  .                            (3.17) 

The independence function is: 

  1B Ai S AB  .                             (3.18) 

The concurrence is: 

3
max 1 ,0

2

p
C

   
 

.                          (3.19) 

The dependence of B Ai , C , 2Tr AB  on p  is shown in Figure 3.3. It is seen that B Ai  varies with 
decoherence degree in the full range from 1  at 0p   to 1  at 1p   (full depolarization), when 
correlation of the subsystems fully disappears. The independence increases according to the increase of 
mixedness in both its measures (exactly proportional for  S AB ) and to the decrease of concurrence. It  

is the most interesting that there is an interval 
1 2

4 3
p  , where 0B Ai   and 0C  . On this interval  

the system is in an entropic sense is classical but nevertheless entangled. 
 
3.2.5. Dephasing 

The transformation is [45,46]: 

 
 

1 0 | 1 1 0 ,

0 1 1 0 1 .

p

p

 

 
                          (3.20) 

The state (3.13) after dephasing of the particle B  is: 

  1
01 01 10 10 1 01 10 10 01

2AB p        .              (3.21) 

Equations (3.15), (3.17) and (3.18) are true, but 

  2 21 log 1 log
2 2 2 2

p p p p
S AB

          
   

,                  (3.22) 

1C p  .                               (3.23) 

Therefore by full dephasing | 0B Ai  , i.e. the subsystems remain classically maximally correlated. By 
partial dephasing C  and negative |B Ai  are the characteristics of entanglement on equal terms (Figure 
3.4). 

 
3.2.6. Bell­Diagonal States 

Initial Bell-diagonal states are: 

1 2 3 4|AB p p p p                    ,            (3.24) 

where 



Chapter 3. Quantum Causal Analysis 

 24

 

Figure 3.3. Dependence of B Ai  (thick solid line), C  (fine solid line), and 2Tr AB  (dashed line) on degree of de-
polarization p  of the state (3.13).  

 

 

Figure 3.4. Dependence of B Ai  (thick solid line), C  (fine solid line) and 2Tr AB  (dashed line) on degree of 
dephasing p  of the state (3.13). 
 

   1 1
00 11 ,  10 01

2 2
       .                 (3.25) 
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Equations (3.15), (3.17) and (3.18) are true again, but 

 
4

2
1

logi i
i

S AB p p


  .                                (3.26) 

  max 2 max 1,0iC p  .                              (3.27) 

Behavior of B Ai , C  and 2Tr AB  in deciding on 4p p ,  1 2 3 1 3p p p p     is shown in 
Figure 3.5. It is seen that B Ai  reflects the mixedness achieving 1 at equality of the all ip . But more 
important, that there is an interval 0.5 0.81p  , where 0B Ai   and 0C  . On this interval the sys-
tem is entangled in spite of the entropic classicness. 

Now consider dissipation of the states (3.24) at the presence of a common bath. It is known that 
against before accepted views, dissipation may not reduce to decoherence, but on the contrary, may play 
a constructive role in entanglement generation [47-54]. Following Reference [52], suppose that the qubits 
represent the two-level atoms separated by a distance small compared to the radiation wavelength. Dissi-
pation occurs at the expense of spontaneous emission of the photons, which have a substantial probability 
to be absorbed by the other atom. In Reference [52] the system dynamic equation is solved and the as-
ymptotic solutions t   are analyzed in detail. In particular the asymptotic density matrix at the ini-
tial one (3.24) is: 

4 4

4 4

4

0 0 0 0

0 0
2 2

0 0
2 2

0 0 0 1

as
AB

p p

p p

p



 
 
 
   
 
 
  

.                        (3.28) 

Hence 
 

 

Figure 3.5. Dependence of B Ai  (thick solid line), C  (fine solid line) and 2Tr AB  (dashed line) on 4p p  of ini-
tial Bell-diagonal states (3.24). 
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     4 2 4 4 2 4log 1 log 1S AB p p p p     ,                 (3.29) 

    4 4 4 4
2 2log 1 log 1

2 2 2 2

p p p p
S A S B

           
   

,           (3.30) 

 
 | 1B A

S AB
i

S A
  ,                           (3.31) 

4C p .                               (3.32) 

The constructive role of dissipation is that even the initial state was separable ( 0C  ) the asymptotic 
one is entangled in the all range of finite 4p . Figure 3.6 demonstrates that in this case the independence 
function does not reflect the mixedness, but does reflect the concurrence. Therewith 1B Ai  , i.e. the sys- 
tem is correlated at almost any 4p  (max 1B Ai  ) is achieved at 4 0p  ). On the interval 40 0.67p   

0BAi   (classical) at rather strong entanglement. 
 
3.2.7. Werner States 

The initial Werner states 

 1
4AB

I
p p                                (3.33) 

represent a depolarized triplet, for which as well as for the singlet, the expressions (3.15)-(3.19) and Fig-
ure 3.3 are true.  

Consider the result of described in above subsection dissipation process of the states (46). According 
to Reference [52] in the asymptotic limit t  : 
 

 

Figure 3.6. Dependence of B Ai  (thick solid line), C  (fine solid line) and 2Tr AB  (dashed line) on 4p p  of asymp- 
totic Bell-diagonal states (3.28). 



Chapter 3. Quantum Causal Analysis 

 27

0 0 0 0

0 0
8 8

0 0
8 8

0 0 0 1
4

as
AB

p p

p p

p



 
 
 
 
 
  
 
 

 
 

                          (3.34) 

Hence: 

  2 2log 1 log 1
4 4 4 4

p p p p
S AB

          
   

,                       (3.35) 

    2 2log 1 log 1
8 8 8 8

p p p p
S A S B

           
   

,                     (3.36) 

4

p
C  .                                      (3.37) 

Figure 3.7 shows that asymptotic Werner states are radically differ from the initial ones: They are not 
only entangled at any 0p  , but the concurrence increases with the increase of p —the smaller entan-
gled initial state the greater entangled dissipated one. Therewith B Ai  is positive (classical) at any p  
( max 1B Ai   at 0p  , min 0.493B Ai   at 1p  ). It is remarkable that the decrease of B Ai  and the 
increase of C  are practically proportional to the increase of mixedness. 

 
3.2.8. Maximally Entangled Mixed States 

In Reference [55] it is conjectured that at fixed 2Tr AB  the maximally entangled are the states: 
 

 

Figure 3.7. Dependence of B Ai  (thick solid line), C  (fine solid line) and 2Tr AB  (dashed line) on p  of asymp-
totic Werner states (3.34). 
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 

 

 

 

0 0
1 22 , 0,

0 1 2 0 0 3 3
,  

0 0 0 0 2
, ,1

2 3
0 0

2

AB

h

h
h

h





 

 
 

 
                         
 

.                (3.38) 

Hence: 

     2 2 21 2 log 1 2 log log
2 2 2 2

S AB h h h h h h
                          

       
,     (3.39) 

       2 2log 1 log 1S A S B h h h h      ,                       (3.40) 

B Ai  is determined by Equation (3.31), the concurrence is 

C  .                                    (3.41) 

The dependence of B Ai , C , 2Tr AB  on   is shown in Figure 3.8. B Ai  changes from 0.725  at 
0   to 1 , at 1   and its decrease as whole reflects the decrease of mixedness. Therewith on the  

interval 
2

0
3

   0BAi   at 0C  —the states are entangled in spite of the entropic classicness. 

According to solution of Reference [52], the asymptotic result of dissipation of the state (3.38) is: 

   

   

0 0 0 0

1 1
0 1 2 1 2 0

4 4
1 1

0 1 2 1 2 0
4 4

1
0 0 0

2

as
AB

h h

h h

h



 
 
   
 
 
   
 
 

 
 

.                        (3.42) 

Hence: 

  2 2

1 1 1 1
log log

2 2 2 2
S AB h h h h

                    
       

,                     (3.43) 

    2 2

1 1 3 3
log log

4 2 4 2 4 2 4 2

h h h h
S A S B

                     
       

,                (3.44) 

B Ai  is determined by Equation (3.31), the concurrence is: 

 1
1 2

2
C h  .                                   (3.45) 

Figure 3.9 shows that dissipated maximally entangled mixed states are characterized by radically dif-
ferent dependence of C  on  , hence at small   they are mere entangled than the initial ones. As this 
take place, as a result of dissipations the system has become in entropic terms classical ( |0.571 1B Ai   
at all  ). In contrast to the initial states the independence function varies inversely to the degree of 
mixedness. In the pure state limit 0  :   0S AB  , 2Tr 1AB  , but also     0S A S B  , 
therefore 1B A A Bi i  . 

Qualitatively asymptotic maximally entangled mixed states are close to asymptotic Werner states by 
the relation of independence, concurrence and mixedness.  
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Figure 3.8. Dependence of B Ai  (thick solid line), C  (fine solid line) and 2Tr AB  (dashed line) on   of initial 
maximally entangled mixed states (3.38). 
 

 

Figure 3.9. Dependence of B Ai  (thick solid line), C  (fine solid line) and 2Tr AB  (dashed line) on   of asymp-
totic maximally entangled mixed states (3.42). 
 

3.3. Asymmetric Two­Particle States 
 

Hereafter we consider the examples of asymmetric states, for which application of causal analysis is 
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the most substanceble. The examples are considered in ascending order of nontriviality. In the computa-
tions of 2c  we shall suppose 1k   until the last example, where we shall consider the variable k . 
Note, that in those examples we shall nowhere use the axiom of strong causality (3.4). Reverse time is 
allowed. 

 
3.3.1. Asymmetric Dissipation 

Consider the third possible way of decoherence that is dissipation by the same manner as in Section 
3.2.4 and 3.2.5: only one particle B  is dissipated. Therein lies dissimilarity from the symmetric dissipa-
tion considered in Sections 3.2.6-3.2.8.  

The dissipation reduces to the following transformation [45,46]: 
 

0 0 0 0 ,

1 1 (1 ) 1 1 0 0 ,

1 0 1 1 0 ,

0 1 1 0 1 .

p p

p

p



  

 

 

                              (3.46) 

As well as in Sections 3.2.4 and 3.2.5 the singlet (3.13) is taken as the initial state. 
The dissipated density is: 

 1
10 10 (1 ) 01 01 00 00 1 01 10 10 01 .

2AB p p p                  (3.47) 

The reduced densities are: 

 1
0 0 1 1

2A   ,                               (3.48) 

1
(1 ) 0 0 (1 ) 1 1

2B p p        .                         (3.49) 

The entropies are: 

  2 2log 1 log 1
2 2 2 2

p p p p
S AB

          
   

,                      (3.50) 

  1S A  ,                                 (3.51) 

  2 2

1 1 1 1
log log

2 2 2 2

p p p p
S B

   
   .                   (3.52) 

The independence functions are: 

 
     

1
,  

A BB A

S AB
i i S AB S B

S B


   .                      (3.53) 

The concurrence is: 

1C p                                     (3.54) 

From Figure 3.10 it is clear that dissipation differs from depolarization and dephasing by greater val-
ues of C  in the all p  range, while B Ai  is negative everywhere similar to the dephasing case. But the 
main interest represents Figure 3.11, where the measures of causality 2c  and   are presented. 2 0c  , 
therefore the particle A  is the cause and B  is the effect. It is in full agreement with the intuitive ex-
pectation—the irreversible flow of information is directed to the dissipating particle B . The decrease of  
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Figure 3.10. Dependence of |B Ai  (thick solid line), C  (fine solid line) and 2Tr AB  (dashed line) on degree of dis-
sipation p  of the states (3.47). 
 

 

Figure 3.11. Dependence of 2c  (solid line) and   (dashed line) on degree of dissipation p  of the states (3.47).  
 

2c  with the increase of p  also responds to intuitive expectation of amplification of causal connection  

with the increase of dissipation. But employment of the classical measure   would lead at 
1

0
2

p    
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to the opposite conclusion about directionality of the causal connection, while at 
1

1
2

p     becomes  

classically meaningless. 

In the entropic diagram (Figure 3.1) the states (3.47) correspond to subspaces IQ (at 
1

0
2

p  ) and 

IIIQ (at 
1

1
2

p  ). The transition between the subspaces does not break smoothness of  2c p . 

 
3.3.2. Coffman­Kundu­Wootters State 

Coffman, Kundu and Wootters [56] have discovered the (CKW) state: 

 1 1
100 001 010

22
CKW    ,                                (3.55) 

which is notable by maximal pairwise entanglement (measured by concurrence) of the subsystems AB  
and AC . The entanglement properties of this remarkable state have also been considered in Reference 
[44]. 

Take the pair AB  (the pair AC  is identical). The reduced densities are: 

   1 1 1
10 10 00 00 01 01 10 01 01 10

2 4 2 2
AB      ,          (3.56) 

 1
0 0 1 1

2A   ,                                (3.57) 

3 1
0 0 1 1

4 4B   .                                (3.58) 

The entropies are: 

    2 2

3 3 1 1
log log 0.811

4 4 4 4
S AB S B     ,                    (3.59) 

  1S A  .                                (3.60) 

The independences are: 

0.233,  0.B A A Bi i                            (3.61) 

The measures of causality are: 

2,  5.299c                              (3.62) 

The concurrence is: 

1

2
C  .                                (3.63) 

According to the quantum measure 2c  A  is the cause and B  is the effect, while the classical 
measure   is meaningless (the subspace IIIQ in the entropic diagram). In the pair AC  the result is the 
same and thus A  is the common cause for B  and C . Classical intuition in this case would be pow-
erless to distinguish the common cause from the common effect. 

Intuition gives only true, by virtue of the symmetry, answer about the absence of causal connection of  

B  and C . The similar mathematics for this couple give: 0.233B C C Bi i  , 1  , 2c   , 
1

2
С  .  
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The particles B  and C  are entangled and classically correlated due to availability of the common 
cause. Note that the mixedness, according to both the measures in the pairs AB  ( AC ) is less than in the  

pair BC :   0.811S AB  , 2Tr 0.625AB  ,   1S BC  , 2 1
Tr

2AB  . 

 
3.3.3. WRr­State 

In References [57,58] the different three-partite states related by the symmetry transformations, the par-
ticular cases of which are GHZ and W-states, have been investigated. 

In particular the duplet has been obtained: 

 1
001 010 2 100

6
WRr    .                         (3.64) 

This state differs by the entanglement distribution from W-state considered in Section 3.2.3, for which  
1

3AB AC BCC C C   , and the state considered in Section 3.3.2, for which 
1

2
AB ACC C  , 

1

2BCC  .  

For the state (3.64) 
2

3AB ACC C  , 
1

3BCC   [57,58], that is the pair BC  has entanglement twice  

smaller than two another pairs have.  
For the state (3.64): 

 1
4 10 10 2 10 01 2 01 10 01 01 00 00

6AB      ,            (3.65) 

    2 2

1 1 5 5
log log 0.651

6 6 6 6
S AB S B     ,                       (3.66) 

  2 2

1 1 2 2
log log 0.918

3 3 3 3
S A     ,                          (3.67) 

0.412,  0B A A Bi i   ,                                (3.68) 

2,  3.43c    .                                (3.69) 

The same is true for the pair AC . Therewith 2 2Tr Tr 0.722AB AC   . 
As in Section 3.3.2, A  is the cause for B  and C  and only the quantum measure of causality has a 

meaning (the subspace IIIQ in Figure 3.1). The quantitative difference implies that according to both the 
measures of mixedness in the causal links of the state (3.64) it is less than in (3.55), and though the con-
currence is less, the independence functions 0B A C Ai i   are lower, i.e. quantum correlations are 
stronger, and c2 is lower, i.e. causal connection is expressed stronger. 

For the particles B  and C  in the state (3.64) we have:   0.918S BC  , 2Tr 0.556BC  ,  

0.412B C C Bi i  , 1  , 2c   , 
1

3
C  . As with the state (3.55), causality in the pair BC  is absent,  

and although the mixedness is lower, but the entanglement and classical ( 0B C C Bi i  ) correlations are 
weaker. 

 
3.3.4. Asymmetric “Quantum­Classical” States 

The question on the peculiarities of behavior of the asymmetric states was the first to set in reference 
[59], where the case of “quantum-classical” two-partite states was considered. The subsystem A  is 
called quantum if    S A S AB , and classical – B  if    S B S AB . The strange fact has been dis-
covered: the decoherence may go faster by interaction of the environment with the classical subsystem. 
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This has been called in Reference [59] anomalous entanglement decay. As a result a number of open 
questions about nontrivial behavior of the open systems have been set, among them on asymmetry in the 
transfer of quantum information with respect to its direction. 

In Reference [59] asymmetric states were considered: 

1 1 2 2(1 ) ,  0 1AB q q q          .                     (3.70) 

with normalized 2
1 00 1 11a a     and 2

2 10 1 01a a     with 0 1a  . From Equa- 
tion (3.70) it is seen that mixedness depends on q  only, while the concurrence—on q  and a . The 
expanded Equation (3.70) is: 

    

   
 

2 2

2 2

2 2

2 2

0 0 1

0 1 1 1 1 0

0 1 1 1 0

1 0 0 1

AB

qa qa a

q a q a a

q a a q a

qa a q a



 
 
    
      
    

.             (3.70а) 

Hence: 

     2 2log 1 log 1S AB q q q q     ,                            (3.71) 

         2 2 2 2 2 2 2 2
2 22 log 2 1 2 log 1 2 ,S A a qa q a qa q a qa q a qa q               (3.72) 

     2 2 2 2
2 2log 1 log 1S B a a a a     ,                         (3.73) 

   
 

   
 

,  B A A B

S AB S A S AB S B
i i

S B S A

 
  ,                      (3.74) 

 2 22 1 1 2C a a q   .                               (3.75) 

Always    S A S AB ,  S B  may be greater as well as less than  S AB . According to definition 
of Reference [59] the subsystem A  is almost always quantum, while the subsystem B  may be either 
quantum or classical. In Figure 3.12 the dependences of B Ai , C  and 2Tr AB  on q  and 2a  which 
have the expected appearance. Only the dependence of B Ai  on 2a  is nontrivial. That the B Ai  is al- 

most always negative (except of the case 
1

2
q  ) just reflects the fact that the subsystem A is almost al- 

ways quantum. At the maximal mixedness, achieved at 
1

2
q  , the subsystem are not entangled but clas- 

sically maximally correlated ( 0B Ai  ) at any 2a . 
The dependences of 2c  and   on q  and 2a  are presented in Figure 3.13. The positive value of 

2c   shows that at almost all q  and 2a   A  is the cause and B  is the effect. Causality disappears  

( 2c   ) only at 0q   or 1 (the pure states) and 2 1

2
a   (the symmetric states). The direction of  

causal connection A B  clears up a conclusion of Reference [59] about bigger fragility to decoher-
ence of the classical subsystem B . Certainly the runoff quantum information occurs mainly in the effect 
B . 

The states correspond to the subspaces IQ and IIIQ (Figure 3.1), accordingly, the classical measure of 
causality   in Figure 3.13 shows either mistakenly opposite direction of causal connection or loses its 
meaning where   is negative. Classical causality is absent ( 1  ) at 2a q  and 2 1a q  . The 
negative values of   (subspace IIIQ) correspond to the positive values of the independence function  
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(a)                                               (b) 

Figure 3.12. Dependence of B Ai  (thick solid lines), C  (fine solid lines) and 2Tr AB  (dashed lines) (a) on q  and 
(b) on 2a  of the asymmetric “quantum-classical” states (3.70). 
 

 
(a)                                               (b) 

Figure 3.13. Dependence of 2c  (solid lines), and   (dashed lines) (a) on q  and (b) on 2a  of the asymmetric 
“quantum-classical” states (3.70). 
 

A Bi  or in other words, to the classicness of subsystem B  by the definition of Reference [59]. But since 

2 0c   is always positive we conclude that anomalous entanglement decay by Reference [59] is not 
anomalous, because it is only a particular case of general and natural phenomenon of greater quantum 
information runoff on the more dissipative subsystem. 

A nontrivial quantitative conclusion (which is impossible to make simply from appearance of the states  
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(3.70) or (3.70a)) is that maximal mixed states 
1

2
q   correspond to the one-valued function line (Fig- 

ure 2.1). At any 2a  here 0   (Figure 3.13), that corresponds to the utmost irreversible transition 
A B . This one-valued dependence of B  on A  is achieved at zero concurrence (Figure 3.12). 

Therewith 2c  has any positive value depending on 2a . In other words, the case of the utmost strong 
classical causality can correspond to different degree of uniformly directed quantum causality—from the 
strongest one for the utmost asymmetry of the state ( 2 0a   or 2 1a  ) to its absence at the symmetry  

( 2 1

2
a  ). 

 
3.3.5. Thermal Entanglement under a Nonuniform External Magnetic Field 

It is generally believed that increase of the temperature, as well as the magnetic field, destroy entan-
glement. But recently [60] it has been discovered that nonuniform magnetic field, on the contrary, play a 
constructive role and entanglement is maintained at the high temperature as well as under the strong 
magnetic field. It has been found that just nonuniform magnetic field of opposite direction at the subsys-
tem A  and B  has such decoherence suppression property. 

Consider, according to Reference [60], thermal entanglement of the two qubits with spin 
1

2
 related by  

XY-Heisenberg interaction with the following Hamiltonian: 

 x x y y z z
A B A B A A B BH J S S S S B S B S    ,                          (3.76) 

where the spin operator 2j jS   ( , ,j x y z ), J  is the strength of Heisenberg interaction, AB  and 

BB  are the external magnetic fields at the particles A  and B . The eigenvalues and eigenvectors of 
Hamiltonian (3.76) are: 

 
 

00 00 ,

11 11 ,

,

A B

A B

H B B

H B B

H D 

  

 

   

                             (3.77) 

where 

 1
01 10A BB B D

N J




  
   

  
, 

 2 2
A BD B B J   . 

The density matrix of the thermal states is: 

 

 

e 0 0 0

0 01

0 0

0 0 0 e

A B B

A B B

B B k T

AB

B B k T

m n s

s m nZ




 

 
 

      
 
 

,                      (3.78) 

Tr e BH kTZ  , 

ch
B

D
m

k T

 
   

 
, 
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shA B

B

B B D
n

k TD

 
   

 
, 

sh
B

D
J

k T
s

D

 
  
  . 

In the next calculations we accept 1Bk J  . The state asymmetry is determined by n . 
From Equation (3.78) follows: 

 
2 2 2 2 2 2 2 2

2 2

2 2

log log

exp exp exp exp

               log log ,

A B A B A B A B

m n s m n s m m s m m s
S AB

Z Z Z Z
B B B B B B B B

T T T T

Z Z Z Z

       
  

                  
        

    (3.79) 

  2

2

exp exp

log

exp exp
            log ,

A B A B

A B A B

B B B B
m n m n

T T
S A

Z Z
B B B B

m n m n
T T

Z Z

          
    

            
   

          (3.90) 

  2

2

exp exp
log

exp exp
            log .

A B A B

A B A B

B B B B
m n m n

T T
S B

Z Z
B B B B

m n m n
T T

Z Z

          
    

            
   

         (3.91) 

The independence functions are determined by the general formulae (87). The concurrence is: 

1
2

s
C

Z


                                     (3.92) 

For investigation of the nonuniform field impact, accept at the beginning 1T  , 5AB  , 5BB p . 
The maximal mixedness both by  max S AB  derived from Equation (3.79), and by 2minTr AB  

(Figure 3.14) is achieved at 0.010p  . The concurrence in Figure 3.14 demonstrates noted in Refer-
ence [60] the most entanglement at oppositely directed fields at A  and B , but the maximum is 
achieved not at the exact antisymmetry ( 1p   ) as presumed in Reference [60], but at 0.253p   . 
Note, that according to Equations (3.90) and (3.91)  max S A  ( 0.149p   ) is close to max C , while 

 max S B  is close to 2minTr AB  ( 0.08p  ), therewith max 26.5   is observed at 0.176p  . The 
independence function B Ai  in Figure 3.14 demonstrates similarity neither with the mixedness nor with 
the concurrence. 1B Ai    that is quantum correlation increases at deeply negative p , where C  de-
creases. At 0.54 0.5p    B Ai  is classically positive in spite of 0C  . max B Ai  that is the least 
correlation of the subsystem is observed at 0.379p  , where C  is still finite. At big p  B Ai  goes 
down at the expense of classical correlations under the parallel fields. The independence function A Bi  is 
also shown in Figure 3.14. Although 0A Bi   at 0p   there are no antisymmetry by p , min A Bi  is 
observed at 1.115p   , while 1A Bi   at big positive p . In the interval 0 0.5p   the states are 
entangled though classically correlated (the both i  are positive). Thus, the independence functions  
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(a)                                               (b) 

Figure 3.14. Dependence of (a) |B Ai  (thick solid line) and |A Bi  (fine solid line), (b) C  (solid line) and 2Tr AB  
(dashed line) on B Ap B B  of the states (3.78) ( 1T  ). 
 
demonstrate nontrivial relation between quantum and classical correlations, which is impossible to reveal 
from consideration of the concurrence only. 

Consider the causal connection of the subsystems. In this case determine 2c  not only at 
1k r t    in Equation (2.12), but drawing on the eigenvalues of Hamiltonian (3.77), compute t  

according to Equation (3.5). Supposing now 1r  , determine 2 2c c t  . In Figure 3.15 2c , 2c  and 
  are presented. The former two as convenience (to show their maxima) are presented at two different 
scales for the parallel and antiparallel fields. According to all the three measures causality is absent at 

1p   , that is under equal parallel and antiparallel fields at A  and B . The interval  , 1p    cor-
responds to the subspace IQ,  1,0.54p  —IIQ,  0.54,0p  —IVQ,  0,1p —IIC,  1,p  —IC. Ac-
cording to both the quantum measures at 1p   A  is the cause, B  is the effect, and inversely at 

1p  . In other words, the effect is always in the region of stronger field. It can be understood as stabi-
lizing polarization of the qubit in the strong field, as a result of which the qubit becomes to a greater de-
gree the sink of information than the source. At directionality of causal connection A B  and 
p   causality is amplified: 2 0c   , 2 0c   . But at directionality B A  2min c  and 

2min c  are not at 0p   as could be supposed intuitively, but at finite 0.364p   for 2c  and 
0.266p   for 2c . These values of p  are determined by the chosen temperature 1T  . Calculation 

shows that specific field ratio p  at which causality is strongest decreases as the temperature increases. 
The causality function   gives the right answer about directionality of causal connection only at 0p  . 
At last from Figure 3.15 it is seen that there is no a qualitative difference between 2c  and 2c . 

Consider the temperature influence more closely. It can be expected that any correlations decrease as 
the temperature increases. On the other hand, namely finite temperature leads to mixing, which is a nec-
essary condition of quantum causality. Indeed, as the temperature increases  S AB  increases, however 
the subsystem entropies increases too, but by different manner, and one can expect nontrivial behavior of 
the entropic functions. 

From Figure 3.16 it is seen that mixedness increases with the temperature, but the magnetic field at the 
subsystem B  suppresses this temperature influence. The concurrence (Figure 3.17) under antiparallel 
fields, in accordance with the main conclusion of Reference [60] is maintained at the high temperature.  



Chapter 3. Quantum Causal Analysis 

 39

 
(a)                                               (b) 

 

 
(c) 

Figure 3.15. Dependence of (a, b) 2c  (thick solid line) and 2c  (fine solid line), and (c)   (dashed line) on 

B Ap B B  of the states (3.78) ( 1T  ). 
 
However the most suppression of decoherence is achieved not in the antisymmetric case ( 1p   ), but 
under stronger field at B  ( 1.5p   ). At 0T  , on the contrary, the highest concurrence is achieved 
under zero field at B . At positive p  the concurrence steeply disappears in accordance with common 
view about suppression of entanglement by the magnetic field. The independence function B Ai  (Figure 
3.18) points out monotonous amplification of quantum and classical correlations with amplification of 
negative field ratio p . At positive p  correlations are classical and the temperature dependence is not 
monotonous—there is a minimum of positive B Ai  (maximum of classical correlation) at the finite tem-
perature. The inversed independence function B Ai  (Figure 3.19) has much smaller sensitivity of the  
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Figure 3.16. Dependence of 2Tr AB  on T of the states (3.78). 
 

 

Figure 3.17. Dependence of C  on T of the states (3.78). 
 
temperature variation to the negative p , but much greater sensitivity to the positive p . At 0p   the 
curve  A Bi T  has the inflection point (at 0.8T  ), which is absent in the curve B Ai . 

The classical measure of causality   (Figure 3.20) demonstrates that in the domain of its correct im-
plementation ( 0p  ) directionality of causal connection is expectly independent of the temperature.  
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Figure 3.18. Dependence of |B Ai  on T  of the states (3.78). 
 

 

Figure 3.19. Dependence of |A Bi  on T of the states (3.78). 
 
There is only a weak amplification of the causal connection at 0.9T  . In the domain of its incorrect 
implementation ( 0p  )   demonstrates the breaks and causality reversals. In Figure 3.21 behavior of 

2c  and 2c  against the temperature is shown. At any p  directionality of the causal connection is inde-
pendent of the temperature, but its value depends on it. At 0p  , that is under the parallel fields, cau-
sality utmostly amplifies at the temperature tending to zero and remains almost steady at 1.3T   (at  
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Figure 3.20. Dependence of   on T  of the states (3.78). 
 

 
(a)                                               (b) 

Figure 3.21. Dependence of 2c  (a) and 2c  (b) on T of the states (3.78). 
 

0.5p   there is a very weak amplification of causality at the high temperature). Under the antiparallel 
fields ( 0p  ) causality, on the contrary considerably amplifies at the high temperature. The stronger 
field nonuniformity, the sharper this amplification. As it was accepted 1J  , 5AB   in the computa-
tions, hence it follows that Heisenberg interaction is essential for the causal connection only under the 
parallel fields. 

 
3.4. Asymmetric Three­Particle States 
 

Above the series of examples of two-qubit causeless (symmetric) and causal (asymmetric) states has 



Chapter 3. Quantum Causal Analysis 

 43

been considered. In this section we consider more complicated three-qubit states. In fact this considera-
tion demonstrates the qualitative peculiarities of the many-qubit states as compared to two-qubit ones. 

As before the first qubit we call the subsystem A , the second and third—the subsystems B  and C  
respectively. We consider the bipartite states, where one party may consists of two particles, that is some 
more complicated in comparison to Section 3, where only one-particle partition has been analyzed. Thus 
the rather simple three-qubit examples will help to understand the peculiarities of many-particle causality 
in comparison to two-particle ones. 

Naturally, instead of the concurrence every example we shall provide with the negativity N  as a 
standard measure of bipartite entanglement between two groups of qubits which is defined as (e.g. [61]): 

  i
i

N                                        (3.93) 

where i  is the negative eigevalue of T , and T  denotes the partial transpose with respect to another 
subsystem. And in this section the entropy of full system  S ABC  (or two-particle subsystems 
 S AC  etc.) as a measure of mixedness is more convenient. 
At last, after rather detailed description of the above examples, below we can afford the less detailed 

style. 
 
3.4.1. Dissipated GHZ States 

Let’s apply the transformation (3.46) to one of the particles of (3.10), for example, C . By the influ-
ence of dissipation the state becomes mixed, so its density matrix is: 

    1
000 000 1 111 111 110 110 1 000 111 111 000

2
diss
GHZ p p p            (3.94) 

The full set of marginal and conditional entropies is calculated from the matrix (14) and corresponding 
reduced matrices. Then the independence functions (1) for the all bipartitions are calculated, which in 
their turn are used in calculation of corresponding 2c . 

Because of the symmetry there are only four unique links: A B , AB C , A C , AC B . The  
A B  link is symmetric ( A B B Ai i ) so there is no causality in it. The causalities characterized by 2c   

of three other links are presented in Figure 3.22(a) (hereafter we follow the notation of 2c  arguments 
ordering:  2 , 0c X Y   corresponds to that X  is cause and Y  is effect). 

As we see in the links AB C  and A C  the dissipated particle C  always corresponds to the ef-
fect (    2 2, 0,  , 0c AB C c A C  ) and with the increase of the degree of dissipation p  the causality 
amplifies ( 2 0c   at 1p  ). It is in full agreement with the intuitive expectation—the irreversible 
flow of information is directed to the dissipated particle. The fact that    2 2, ,c AB C c A C  is explained 
by stronger mixedness of the reduced state  AC  as compared to  ABC :    S AC S ABC  
(Figure 3.22(b)), because mixedness is a necessary condition of causality. In its turn stronger mixedness 
of  AC  is the consequence of both interaction with B  and dissipation of C  i.e. interaction with 
the non-controlled environment; while mixedness of  ABC  is the consequence of only the latter. 
Note that in the case of dissipation of one of the particles of two-particle counterpart of GHZ state (that is 
Bell state) all the corresponding entropies and therefore all the other parameters, including 2c  exactly 
coincides with those of GHZ AB C  partition. 

In the link AC B  the behavior of causality is nontrivial. In contrast to the above case the couple 
AC  including the dissipated particle C  constitutes the cause. The fact is the dissipation of C  de-

creases  S C  (the states approaches to the certain ground state according to Equation (3.46)). On the 
other hand the dissipation of C  opens the subsystem AC  to the environment and  S AC  increases  

and has the maximum at 
1

2
p   equal to 

3

2
 (Figure 3.22(b)), while   1S B const  . The particle  

B  always corresponds to the effect but 2c  is not monotonous: it has the minimum at 0.594p  . To  
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(a)                                               (b) 

 

 
(c)                                               (d) 

Figure 3.22. Dependence of 2c  (a), S  (b), i  and N  (c, d) on degree of dissipation p  of the particle C  for 
the different partition of the states (3.94). 

 
explain this fact, note that at 0p   the state (3.94) is pure therefore  2 ,c AC B  ; at 1p   the 

state (3.94) is maximally mixed, but    S AC S B  (the fully dissipated particle C  has “disappeared”) 

therefore  2 ,c AC B   too. The denominator of Equation (2.12) for  2 ,c AC B : AC B B ACi i  has  

the maximum at 0.401p   (Figure 3.22(d)), while the nominator that is correlation   1 1AC B B ACi i    

decreases as p  increases, therefore 2min c  is shifted to a higher p relative to 
1

2
. But by comparison  

with other links causality in the link AC B  is prevailing, as it is seen from Figure 3.22(a), at small 
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dissipation ( 0.387p  ). 
A comparison of the negativity N  and independence functions i , which are presented in Figures 

3.22(c) and 3.22(d), shows that the latter’s are more sensitive to partition. In addition one could expect 
that since a maximally entangled state is pure (and therefore causeless) then the weaker entanglement the 
stronger causality. But a comparison of Figures 3.22(c), 3.22(d) and 3.22(a) shows that in general such is 
not the case. 

 
3.4.2. Dissipated W­States 

Applying transformation (3.46) to the third particle C , of W-state (3.11) we come to the dissipated 
states: 

 

1
010 010 010 100 100 010 100 100 (1 ) 001 001

3

           000 000 1 001 010 001 100 010 001 100 001 .

diss
W p

p p

       

      

     (3.95) 

Similar to dissipated GHZ in the links AB C  and A C  the dissipated particle C  always corre-
sponds to the effect (    2 2, 0,  , 0c AB C c A C  ) and with the increase of the degree of dissipation p  
the causality amplifies ( 2 0c   at 1p  ) (Figure 3.23(a)). The fact that    2 2, ,c AB C c A C  is ex- 
plained by more mixedness of the reduced state  AC  as compared to  ABC :    S AC S ABC  
(Figure 3.23(b)) by the same reasons as in the above case. And in the link AC B  the couple AC , in-
cluding the dissipated particle C , constitutes the cause by the same reasons as in the case of dissipated 
GHZ state. The distinction is that 2c  has the minimum at 0.576p   and 2c  in this link is higher, i.e. 
causality is weaker, than in the two other links at any p  (Figure 3.23(a)). 

When Figures 3.23(c) and 3.23(d) are compared with Figure 3.23(a) it is apparent that for the differ-
ent partitions the higher negativity, the stronger quantum correlations and the weaker causality: 

     , , ,N AC B N AB C N A C  ,      2 2 2, , ,c AC B c AB C c A C  . It is quite expectable, but within 
the same partition such is not the case: at 0.576p    ,N AC B  goes down, while  2 ,c AC B  goes 
up. 

Of particular interest is negativity and independence function comparison of the reduced state 
 AC . In Figure 3.24 it is seen that at any 1p   the both i  and N  are positive. It means that 

subsystem AC  is in an entropic sense is classical but nevertheless entangled. 
 
3.4.3. Dissipated CKW States 

In Section 3.3.2 it has been found that subsystems of the CKW-state (3.55) are causal, a party A  is a 
common cause for B  and C :    2 2, , 5.30c A B c A C   (the link B C  is causeless: 

 2 ,c A B   ). Since the original state (3.55) is asymmetric, the causality picture will be richer. Let the 
particle C  is dissipated as in above examples. Then the states are: 

   1 1 1 1
010 010 010 100 100 010 100 100 1 001 001

4 2 42 2

1 1 1 1 1
            000 000 1 001 010 001 100 010 001 100 001 .

4 4 42 2 2 2

dissC
CKW p

p p

      

 
      

 

 

(3.96) 

One may expect that as a result of dissipation of C   2 ,c A C  must be lowered, while  2 ,c A B  must 
remain constant; the finite causality must appear in all the other links. The results of all calculations are 
presented in Figure 3.25 (except the link A B , where all the parameters are constants:  2 , 5.30c A B  ,  

  0.811S AB  , 0.233B Ai   , 0A Bi  ,   1
,

4
N A B  ). 
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(a)                                               (b) 

 

 
(c)                                               (d) 

Figure 3.23. Dependence of 2c  (a), S  (b), i  and N  (c, d) on degree of dissipation p  of the particle C  for 
the different partition of the states (3.95). 
 

In Figure 3.25(a) it is seen that indeed  2 ,c A C  lowers from 5.30 as p  increases and tends to 0 at 
1p  .  2 ,c A C  is minimal among the others at any p . Indeed, just in the link A C  directionality 

of causal connection owing to original asymmetry and owing to dissipation is the same and resulting 
causality turns out the strongest. In the link B C  causality is only due to dissipation and, accordingly, 
it is weaker:    2 2, ,c B C c A C  at any p . Next, in Figure 3.25(a) it is seen that causality in both the 
two-particle links A C  and B C  is stronger ( 2c  is less) than in the three-particle links AB C , 
A BC  and AC B . It is explained by the fact that mixedness of the formers is more—the both 
 S AC  and  S BC  are more than  S ABC  (Figure 3.25(b)). It should be stressed that the rela- 
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Figure 3.24. Dependence of i  and N  on degree of dissipation p  of the particle C  for reduced  AC  of 
the states (3.95). 
 
tionship between causality and mixedness is only a tendency, but not a rule, e.g.  2 ,c B C  and  S BC  
both decrease as p  increases. 

A nontrivial result, as well as in the cases of GHZ and W-states, is that dissipated particle C  can be-
long not only to the party-effect (in the partitions AB C  and A BC ), but to the party-cause too (in 
the partition AC B ). At full dissipation ( 1p  ) the particle C  “disappears” from its two particle 
party and as a result      2 2 2, , , 5.30c AC B c A BC c A B   . 

When Figure 3.25(a) is compared with Figures 3.25(c)-(e) it is apparent that for most of the partitions 
the stronger entanglement the weaker causality:        , , , ,N A C N AB C N AC B N A BC    corre-
spond to        2 2 2 2, , , ,c A C c AB C c AC B c A BC   . But the partitions A B  and B C  do not 
obey this relationship. That is the relationship between causality and entanglement is only a tendency, but 
not a rule too. 

In Figure 3.25(f) it is seen that in the link B C  at any 1p   the both i  and N  are positive. 
The subsystem BC  is entangled in spite of the entropic classicness. 

Now consider dissipation of the particle A : 

 

 

1 1
001 001 001 010 010 001 010 010 100 100

4 2

1 1
            000 000 001 100 010 100 100 001 100 010

2 2 2

dissA
SKW

p

p p

 
    


    

     (3.97) 

One may expect that as a result of increasing dissipation of A , the original causal connection 
A C  will at the beginning attenuate until disappear at some p , after that direction of causality will 

reverse with further utmost amplification of the connection C A  as p  will tend to 1. The finite cau-
sality must appear in all the other links, except B C  because of its symmetry. The results of calcula-
tions are presented in Figure 3.26, except the link B C , where all the parameters are constants:  

 2 ,c A B   ,   1S BC  , 0.233B C C Bi i  ,   2 1
,

4
N B C


  (the particles B  and C  are en-  
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(a)                                               (b) 

 
(c)                                               (d) 

 
(e)                                               (f) 

Figure 3.25. Dependence of 2c  (a), S  (b), i  and N  (c, d, e, f) on degree of dissipation p  of the particle C  
for the different partition of the states (3.96). 
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(a)                                               (b) 

 

 
(c)                                               (d) 

Figure 3.26. Dependence of 2c  (a), S  (b), i  and N  (c, d) on degree of dissipation p  of the particle A  for 
the different partition of the states (3.97). 
 
tangled and classically correlated due to availability of the common cause). The partition AB C  is 
equivalent to the presented one AC B . 

In Figure 3.26(a) it is seen that indeed  2 ,c A C changes its sign at 
1

2
p  . But the variation of posi- 

tive  2 ,c A C  (corresponding to directionality of the causal connection A C ) proves to be not mo-
notonous; it has the intuitively unexpected minimum equal to 5.08 at 0.103p  . The monotonous in-
crease of negative  2 ,c A BC  simply reflects amplification of causality along with increase of dissipa-
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tion of the effect A . The nontrivial behavior of causality in the link AC B  is explained by the same 
way as in the GHZ and W examples. It is notable that    2 2min , min ,c AC B c A C . There is an inter-
esting relation, which is valid not only in this example:  

        2 2 2min , 1 , min ,p c AC B p c A C p c A C     . 
There is no a relationship between different 2c  with the degree of mixedness (Figure 3.26(b)). There 

is only a relationship between  2 ,c AC B  and  2 ,c A BC  with the degree of entanglement (Figure  

3.26(c) and (d)): at 
1

2
p      , ,N AC B N BC A  corresponds to    2 2, ,c AC B c A BC ; at 

1

2
p   

   , ,N AC B N BC A  corresponds to    2 2, ,c AC B c A BC . 

In Figure 3.26(d) it is seen that on the interval 
3

1
4

p   the partition AC B  is classically corre- 

lated (the both i  are positive), but entangled. The same is observed in the subsystem AC  (Figure 3.27),  

but on the wider interval 
1

1
4

p  . 

A comparison between the cases dissAB C  and dissBC A  shows: 
1)  2 , 0dissc AB C   at 1p   quicker than  2 ,dissc A BC . It reflects the influence of the origi-

nal (at 0p  ) causality in the link A C  (where A  is the cause and C  is the effect). 
2)  dissS A BC  grows up more than  dissS ABC  as p  increases that is dissipation of the original 

cause enhances mixedness more than of the effect. Therefore opening of the system through the cause 
(information source) is more dramatic than through the effect (information sink). 

3) 0dissA BC
i   at 1p   quicker than dissC AB

i . Therefore dissipation of the original cause quicker  

destroys quantum correlation than of the effect. 

4) At 
3

0
4

p      , ,diss dissN AB C N BC A , but at 
3

1
4

p      , ,diss dissN AB C N BC A .  

Therefore dissipation of the original cause destroys entanglement to a greater extent than of the effect. 
 
3.4.4. Dissipated WRr­States 

In Section 3.3.3 it has been found that in the WRr-state, similar to CKW state, the subsystems AB  and 
AC  are causal, a party A  is a common cause for B  and C , but quantitatively the causality is ex-

pressed stronger:    2 2, , 3.43c A B c A C   (the link B C is also causeless:  2 ,c B C   ). 
Again at the beginning let the particle C  is dissipated. Then the states are: 

 

 

1 1 1
010 010 010 100 100 010 2 100 100 001 001

6 3 6

11
            000 000 001 010 2 001 100 010 001 2 100 001

6 6

dissC
WRr

p

p
p

 
    


    

  (3.98) 

The results of calculations are presented in Figure 3.28 (except the link A B , where all the parame- 

ters are constants:  2 , 3.43c A B  ,   0.650S AB  , 0.413B Ai   , 0A Bi  ,   17 1
,

12
N A B


 ). 

It is easy to see, that the states (3.98) qualitatively are similar to (3.96). The quantitative distinctions 
are stemmed from stronger causality in (3.98). 

Then consider dissipation of the particle A : 

   

 

1 2
001 001 001 010 010 001 010 010 1 100 100

6 3
2 1

            000 000 1 001 100 010 100 100 001 100 010
3 3

dissA
WRr p

p p

      

     
    (3.99) 
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Figure 3.27. Dependence of i  and N  on degree of dissipation p  of the particle A  for reduced  AC  of 
the states (3.97). 
 

The results of calculations are presented in Figure 3.29 except the link B C , where all the parame- 

ters are constants:  2 ,c B C   ,   0.918S BC  , 0.412B C C Bi i  ,   5 2
,

6
N B C


 , that is  

again particles B  and C  are entangled and classically correlated due to availability of the common 
cause. The partition AB C  is equivalent to AC B . 

In contrast to dissipation of C , dissipation of A  leads to a number of qualitative distinctions in Fig-
ure 3.29 as compared to Figure 3.26. Contrary to all the above cases, the entropy of dissipated particle  

 S A  does not decrease monotonously, but has a maximum at 
1

4
p  , while mixedness of the whole 

system  S ABC  does not increase monotonously, but has a maximum at 
3

4
p   (Figure 3.29(b)). 

Therewith  S AC  is the same (with a maximum at 
1

2
p  ). 

The causality set in Figure 3.29(a) notably differs from that in Figure 3.26(a).  2 ,c A C  changes its  

sign at 
3

4
p  , that is original pairwise causality in WRr-state is more robust than in CKW one.  

 2min , 2.12c A C   is deeper and observed now at 0.377p  . In contrast to dissipated CKW state,  

 2 ,c A BC  changes its sign at 
1

2
p  . At less p  direction of causal connection is A BC , at higher  

p  it is A BC . The minimum of  2 , 15.2c A BC   corresponding to A BC  is observed at 
0.288p  . The curve of  2 ,c AC B  in Figure 3.29(a) is similar to that in Figure 3.26(a), although 
 2min , 1.97c AC B   at 0.627p   is not equal to  2min ,c A C  but their position also obey the rela-

tion:         2 2 2min , 1 , min ,p c AC B p c A C p c A C     . 
The same relationship of  2 ,c AC B  and  2 ,c A BC  with the negativity is observed in Figure 3.29(c) 

and (d): at 
3

4
p      , ,N AC B N BC A  corresponds to    2 2, ,c AC B c A BC ; at 

3

4
p    
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(a)                                               (b) 

 
(c)                                               (d) 

 
(e)                                               (f) 

Figure 3.28. Dependence of 2c  (a), S  (b), i  and N  (c, d) on degree of dissipation p  of the particle C  for 

the different partition of the states (3.98). 
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(a)                                               (b) 

 

 
(c)                                               (d) 

Figure 3.29. Dependence of 2c  (a), S  (b), i  and N  (c, d) on degree of dissipation p  of the particle A  for 

the different partition of the states (3.99). 
 

   , ,N AC B N BC A  corresponds to    2 2, ,c AC B c A BC . Note, that the inversion points: 
3

4
p    

in this case, and 
1

2
p   in the case of CKW state dissipation, exactly coincide with break points  

 2 ,c A C   . 

In Figure 3.29(c) it is seen that on the interval 
1

1
2

p   the partition A BC  is classically corre- 
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lated (the both i  are positive, unlike Figure 3.26(c)), but entangled. The same is observed in Figure 
3.29(d) at 0.625p   for the partition AC B . The subsystem AC  (Figure 3.30) is classically cor-
related, but entangled, but on the wider interval 0.375 1p  . 

The conclusions (1)-(4) concerning dissipated CKW state remains true for WRr one (with less 
0.390p   in the quantitative justification of (4)) and obviously are general. 

 
3.5. Overview of Causal Analysis 
 

The classical causal analysis had formalized the intuitive understanding of causality that, first, gave the 
possibility of its application to the complicated system analysis and, second, gave a quantitative measure 
of causality. The quantum extension of causal analysis has shown a richer picture of the subsystem causal 
connections, where the usual intuitive approach is hampered more commonly. The direction of causal 
connection is determined by the direction of irreversible information flow, and the quantitative measure 
of this connection 2c  is determined as the velocity of such flow. The absence of causality corresponds 
to 2c  , accordingly the degree of causal connection is inversely related to 2c . This formal defini-
tion of causality is valid at any time direction. 

The independence functions used in the causal analysis allow classification of quantum and classical 
correlations of the subsystems, and their employment is of interest in any quantum systems, including 
those where causality is absent.  

The possibilities of causal analysis have been demonstrated by the two series of examples of the 
two-partite two-state systems (qubits). The examples in both the series have been arranged in order from 
the simplest to the most nontrivial ones. 

In the first series of the examples (Section 3.2) causality is absent; only the relationship between the 
independence function and the usual measures of entanglement and mixedness is revealed. It has been 
demonstrated that the independence function often but not always is determined by the state mixedness. 
Most important of all, in a number of cases the state can appear classical in entropic sense, but neverthe- 

 

 

Figure 3.30. Dependence of i  and N  on degree of dissipation p  of the particle A  for reduced  AC  of 
the states (3.99). 
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less be entangled.  
In the second series of the examples (Section 3.3) the systems with finite causality have been consid-

ered, beginning with the simplest example with asymmetric dissipation and ending with the enough com-
plicated case of the qubits under a nonuniform external magnetic field at the different temperature. In 
every case the quantum measure of causality has been related with the classical one and it has been dem-
onstrated that the latter often leads to apparent inversion of causal connection or meaninglessness. It has 
been shown the manner in which the distribution of entanglement in a three-partite system leads to the 
pairwise causal connection. For the case of asymmetric “quantum-classical” states the positive answer to 
the question, stated in Reference [59] about availability of an asymmetry in the transfer of quantum in-
formation with respect to its direction, has been obtained. For the case of qubits under an external mag-
netic field the conclusions about nonuniformity field control of directionality of the causal connection 
have been obtained, which can be physically explained by the causal analysis results, but which could not 
be drawn without them. It has been demonstrated that directionality of causal connection is unaffected by 
temperature, but its value is affected by temperature oppositely under the parallel and antiparallel fields. 

In the third series of the examples (Section 3.4) the possibilities of causal analysis have been demon-
strated by the series of examples of the three-qubit states. The examples have been arranged in order of 
increasing asymmetry. We could demonstrate the specific causal properties of the compound parties of 
the quantum systems. In the simplest cases the results of formal causal analysis correspond to the intui-
tively expected ones, but even at small complication of a quantum system the intuition fails. Thus its em-
ployment leads to the nontrivial conclusions about quantum information propagation. 

In contrast to the classical case, a finite causality can exist only in the open systems, because a neces-
sary condition of quantum causality is a finite mixedness. Correspondingly consideration of various 
causal links in the different states has shown that often (although not always) the greater mixedness the 
less 2c . The mixedness of the asymmetric subsystems inside even closed quantum system leads to their 
original causal connection. In the case of asymmetric interaction of a system with the environment, e.g. 
by dissipation of one of the particles, causality emerges inside even originally symmetric causeless sys-
tems. In the originally causal systems the dissipation leads to nontrivial redistribution of the causal con-
nections. Opening of the system through the cause (information source) leads to more mixedness of the 
state than through the effect (information sink). Dissipation of the original cause destroys quantum cor-
relations and entanglement to a greater extent than of the effect. 

In addition we have found that some states can be entangled but classically correlated. This fact is im-
portant for theoretical insight into the results of experiments on macroscopic entanglement of the dissipa-
tive systems described below. 

Application of the causal analysis to the systems with the number of states more than two should pre-
sent no problems in itself, except the usual build-up of calculation cumbersomeness of the density matrix 
eigenvalues. 
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4. Macroscopic Entanglement and Signals in Reverse Time 
 

The progress in quantum mechanics shed a new light on Kozyrev’s results described in Chapter 1, Sec-
tion 1.1 (statements (1)-(5)). His results obtained in the framework of causal mechanics concept, demon-
strated phenomena very similar to macroscopic nonlocality (interpreted now in another terms). Next I 
shall consider Kozyrev’s correlations of the dissipative processes, as macroscopic manifestation of quan-
tum nonlocality. 

Since its discovery phenomenon of quantum nonlocality has been attracting attention, above of all, in 
connection with apparent violation of relativity. Indeed quantum correlations occur through a spacelike 
interval. If it possible namely due to the absence of any local carriers of interaction. But it remains to be 
strange, because such correlations imply possible reversal of time ordering. The mainstream of quantum 
information research avoids this question, because from outset it had been realized that quantum nonlocal 
channel could transmit only unknown information. Therefore for the communication purposes one should 
use an ancillary classical channel. That is why this question became irrelevant. 

In 1980 Cramer put forward an elegant transactional interpretation of quantum nonlocality leaned upon 
Wheeler-Feynman action-at-a-distance electrodynamics and its generalization on quantum amplitudes 
[16]. He conservatively pointed out that it was the only interpretation allowed to explain all basic quan-
tum phenomena, but did not predict any new ones [62]. However his idea proved to be much richer. 
Cramer was the first who explicitly distinguished the principles of strong (local) and weak (nonlocal) 
causality. The latter implies a possibility of advanced correlations, but only related with unknown states, 
or in other terms with genuine fluctuating (random) processes. The weak causality admits the extraction 
of information from the future without the well known classical paradoxes. It allowed Elitzur and Dolev 
to suggest an experimental detection of time reversed causal events [63]. Another way of account of time 
reversed correlation has been suggested and experimentally verified as applied to quantum teleportation 
by Laforest et al. [64]. Although Cramer’s works had some internal contradiction—the explanation of 
quantum phenomena on the base of classical Wheeler-Feynman theory, now the successive quantum ver-
sion of action-at-a-distance theory has been developed [65]. 

In addition take notice to likeness of axioms of causal mechanics and action-at-a-distance electrody-
namics. In this electrodynamics transaction of the charges separated by finite distance x  and lapse 

t  (with zero interval) is postulated. Self-action of the charges is absent. Two from three Kozyrev’s 
axioms (there are 0x   and 0t   between any cause and effect) assert the same, replacing only 
terms “charges” by “cause” and “effect”. 

On the other hand, as it was generally believed that quantum nonlocality existed only at the mi-
cro-level, Cramer addressed the weak causality only to this level. However the idea about persistence of 
nonlocality in the macroscopic limit was recently put forward from different standpoints [66-70] and was 
realized experimentally [71-73]. The experimental results obtained by Kozyrev before the emergence of 
these ideas demonstrated phenomena very similar to macroscopic entanglement induced by dissipation 
and understood in terms of transactional interpretation. 

Our idea was to include dissipation in the framework of Cramer interpretation of quantum nonlocality 
by Wheeler-Feynman action-at-a-distance electrodynamics. This theory considers the direct particle field 
as superposition of the retarded Eret and advanced Eadv ones. The advanced field of a charge q is unob-
servable and manifests itself only via radiation damping [65]: 

2

3

4e

3
adv retE E

qc
  x .                                 (4.1) 

On the other hand, radiation power is: 
2 2

2
3 3

2 e 2 e

3 3
P x

c c
   xx ,                             (4.2) 
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The entropy (dimensionless) production per a particle at temperature  is T S P kT , where  is 
Boltsman constant. Therefore, the third time derivative of position 

k
x  can be related via radiation power 

with the entropy production per particle: 
3

2

3

2e

c
xx    kTS .                                  (4.3) 

The radiation damping presents a typical dissipative process. Moreover, any dissipative processes is 
ultimately related with radiation, and therefore with the radiation damping. Hence it can be asserted from 
Equations (4.1)-(4.3) that advanced fields carry out the relationship between the dissipative processes. 

Although a successive theory is absent yet, the following heuristic equation of macroscopic entangle-
ment, describing factual Kozyrev’s results) has been suggested by us: 

2
2

2
dd

s x
S t

x v
 

 
  

 

 V ,                              (4.4) 

where d  is the entropy production per particle in a probe process (that is a detector), S s  is the density 
of total entropy production in the sources, the integral is taken over the source volume, σ is cross-section 
of transaction (it is of an atom order and goes to zero in the classical limit): 4 2 4em   e , me is the elec-
tron mass, e is the elementary charge.  -function shows that transaction occurs with symmetrical retar-
dation and advancement. The propagation velocity v for diffusion entanglement swapping can be very 
small. Accordingly, the retardation and advancement can be very large. 

As this equation is heuristic, let us consider its correspondence with the particular but strict quan-
tum-mechanical result developed for a dilute spin gas by Calsamiglia and coauthors [70]. They have ob-
tained for partition of the system A B  following equation for the entropy of entanglement between a 
part A  and the rest of the system : B

 22 log e
1

A B
A

N N
S rt

N
 


 ,                               (4.5) 

where  is the number of particles, N A BN N N  ,  is the collision rate. r
For an adaptation of Equation (4.4) to the conditions of the model (4.5), consider the steady-state re-

gime (integrate over time, neglecting the irrelevant integration constant). Then (4.4) reduces to: 

2
dd

s
S

x
  V .                                   (4.6) 

Consider the detector as a small part A  of the large system. Correspondingly the source proves to be 
the part . Then: B

2
A

d
A

S S
S

N L
  B ,                                 (4.7) 

where  is the space size of the system. L
Now slightly transform (4.5), taking into account the assumption that the mean free path is compatible 

to the size of the enclosing volume [70]. That is rt L v , therefore rt Ln , where n N V . On 
the other hand, 2Ln N L , 2rt N L . Assume . At last use  (not ) in the entropy 
definition for further convenience. As a result we can rewrite (4.5): 

1N  ln 2log

2

0.3863A

A

S N

N L
 B .                              (4.8) 

We have the obvious correspondence between (4.7) and (4.8) with 0.3863B BS N . This correspon-
dence encourages considering the equation of macroscopic entanglement (4.4) as at least a not too bad 
approximation of reality in terms of macroscopic correlations. 
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But it should be noted that our equation in its simplest form does not take into account the absorption 
by the intermediate medium. Its influence, however, is very peculiar. Although the equations of ac-
tion-at-a-distance electrodynamics are time symmetrical, the fundamental time asymmetry is represented 
by an absorption efficiency asymmetry: the absorption of retarded field is perfect, while the absorption of 
advanced one must be imperfect. Indeed, having accepted that total field E is superposition of the re-
tarded and advanced: 

ret advE AE BE  ,                              (4.9) 

it is possible [65] to express the constants A and B via corresponding absorption efficiencies  and : a b

1 1
,  .

2 2

b
A B

a b a b


 

a
   

                         (4.10) 

Since we observe only retarded field ( 1A  , 0B  ) then 1a  , but 1b  . It should be stressed wide 
a priori arbitrariness in value , which may be close as to unit so to zero. Therefore the screening prop-
erties of the matter must be in one degree or another attenuated. The fact itself of imperfect absorption of 
the advanced field means a possibility of its separate detection. 

b

Thus observed time asymmetry emerges from absorption asymmetry: efficiency of absorption of the 
advanced field is less than (perfect) of the retarded one (although the theory does not predict how much 
less). Hoyle and Narlikar [65] have explained it by the cosmological reasons: the fact is only Steady-state 
and Quasi-steady-state cosmological models provide such asymmetry. But their proof itself did not refer 
to any cosmological conditions and could be applied, e.g. for a radiating charge in a cavity. Therefore 
absorption asymmetry reflects time asymmetry at more deep level in spirit of Kozyrev [1]. Observational 
consequence of the absorption asymmetry, if there is an intermediate medium, has to be prevailing ad-
vanced nonlocal correlation over retarded one. 

Nonlocal nature of macroscopic correlations can be tested by two ways. They both are based on the 
causal analysis.  

The first way is verification of violation of strong causality (3.4). Moreover, since we use only classi-
cal output of measuring device, we may employ   instead of 2  without limitations (in this we follow 
the accepted way of the use of Shannon entropies for proof of nonlocality [74,75]). That is the first way is 
violation of the inequalities (2.7) like this: 

c

: 1B A 0     ,                            (4.11) 

where   is time shift of  relative to B A  (the arrow is symbol of direction of the causal connection). 
Violation of (4.11) means signaling in reverse time, which is sufficient condition of nonlocality. 

Thus, calculating by experimental data A Bi  and B Ai  as the functions of time shift  , it is possible, 
by their minima, to find optimal time shifts corresponding to connection of A  and . Then, by value 
of 

B
  relative to 1, it is possible to establish the direction of the causal connection. In the case if  is 

known to be the cause (e.g.  is some measure of a source-process), while 
B

B A  is to be the effect (e.g. 
A  is a detector signal), then for any classical interaction |  would observe only at min A Bi 0  , and 

this minimum would correspond to max 1  . Only for nonlocal transaction of A  and  it is possi-
ble 

B
1   at 0  . 

The second way is verification of the Bell-like inequality which is derived as follows. Suppose some 
process  acts upon a distant process C A  by means of any local interaction by the causal chain 

. The intermediate process  is situated so that local carriers of interaction can not come C B A  B
A  avoiding  (e.g. B  occupies a spherical layer around B A ). Then the claim of locality in terms of 

conditional entropies is: 

   S A BC S A B .                               (4.12) 

Transform the left-hand side of this equation: 

                   S A BC S ABC S BC S AC S B AC S C S B C S A C S B AC S B C          
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Substituting the last expression into Equation (4.12), we obtain: 

       S A C S A B S B C S B AC                         (4.13) 

As     0S B C S B AC  , then    S A C S A B . Normalize on  S A : 

       A C A Bi S A C S A S A B S A i   .                     (4.14) 

Next, rearrange terms A Ci  in Equation (4.13): 

       S A C S B C S A B S B AC   .                     (4.13a) 

Transform the right-hand side of this equation: 

                 S A B S B AC S AB S B S ABC S AC S AB S AC S AC B        . 

Since  and   0S AB      0S AC S AC B  , then in the left-hand side of Equation (4.13a) 
   S B CS A C . By 7-th Shannon theorem [38]    S A S B , hence 

       A C B Ci S A C S A S B C S B i   .                    (4.15) 

In Equations (4.14) and (4.15) bring to a Bell-like inequality; its violation is a sufficient condition of 
nonlocality of correlation A  and C : 

 max ,A C A B B Ci i i .                             (4.16) 

In the derivation, the quantum property of negativity of von Neumann conditional entropies has no-
where been used. It means that the derivation holds in terms of Shannon entropies as well, so the well 
known usual entropic Bell inequalities do [74,75]. Next, only the notion of locality but not of the hidden 
variables has been used. Similar to usual Bell inequalities, violation of (4.16) does not forbid existence of 
nonlocal hidden variables. A typical hidden nonlocal variable is advanced Wheeler-Feynman field and its 
generalization on the quantum amplitudes [16,62,65]. 

In spite of the above arguments, it may appear unusual that both the ways of verification of nonlocal 
nature of correlations, i.e. violation of (4.11) and (4.16), are leaned upon positive that is classical inde-
pendence functions . The strongest additional argument in favor of this is revealed on many examples 
of Chapter 3 availability of classically positive  for the entangled states as rather ordinary phenome-
non. 
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5. Experimental Approach 
 

The experimental problem is to establish a correlation of the entropy changes in a probe-process and in 
the source-processes, according to the nonlocality Equation (4.4) under condition of suppression of all 
classical local impacts. As it is not possible to measure d  and S s  in (4.4) directly, we have to evaluate 
for the concrete source and probe processes the theoretical expressions relating the entropies with the 
observables: ,   ,d d dS F P p   ,s ss f P p , where sP  is a measured parameter of the source- 
process, d  is a measured parameter in the probe-process (detector signal),  is set of other pa-
rameters of the processes, influencing on the entropy, which must be known unless they are stable. 

P  p

Although any dissipative process may be used as the probe one, its choice is dictated by relative value 
of effect and theoretical distinctness, allowing to relate the measured macro-parameter (signal) with the 
left-hand side of Equation (4.4) and consciously to take steps on screening and/or control of all possible 
local impacts. From these reasons three types of detectors had been chosen: the first was based on the 
spontaneous variations of self-potentials of weakly polarized electrodes in an electrolyte, the second—on 
the spontaneous variations of dark current of the photomultiplier and the third—on the fluctuations of ion 
mobility in a small electrolyte volume (the latter was suggested and designed by Morozov [76]). 

Consider theory of the electrode detector. The self-consistent solution for the potential u in the liquid 
phase is [76]: 

2
ln cos arccos exp

2

kT q
u z

q kT

 
 


 ,                            (5.1) 

where  is ion charge,  is dimensionless length (q z 1z   corresponds to, half of the distance between 
the electrodes) and   is full (electrokinetic) potential. The entropy can be expressed in terms of the 
normalized potential  as: 

1

0

d

u

u z

 


,                                   (5.2) 

1

0

ln dS z    .                                (5.3) 

After substituting Equation (5.1) into Equations (5.2) and (5.6) one may express the entropy in the 
elementary functions: 

 
 

2

3

6 ln arcsin exp exp ln exp ln 1
4

ln 6 2ln arccos exp
arccos exp

w
w w w w w w w w

S w
w

 
      

    ,  (5.4) 

where 

2

q
w

kT


 ,                                   (5.5) 

and as signs of  and q   are always opposite, 0w  . For weakly polarized electrodes it is easily at-
tainable 1w  |. Then Equation (5.4) is simplified: 

 ln 6 2 ln arccosexpS   w .                           (5.6) 

Note if , then , that corresponds to expectative (space distribution aspires to uniform 
one). From Equation (5.6) the entropy production is  

0w   S  
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exp

arccos exp 1 exp 2

w
S

w w



 w .                           (5.7) 

The prefactor before  is always positive, therefore from Equations (5.5) and (5.7) it follows that 
correlation of  and 

w
S   is negative. If 1   , we can linearize Equation (5.7) and obtain simple 

practical formula: 

1

6

q
S

k
U


   ,                                (5.8) 

where U    is measurable variable potential difference. 
All known local impacts, influencing , namely, temperature, pressure, chemism, electric field, con-

centration and movement of the electrolyte, illumination and even cosmic ray variations must be ex-
cluded. 

U

The detector based on weakly polarized electrodes has been constructed as follows. As the electrodes 
marine geophysical C-Mn ones were chosen in most of experiments (and Ag-AgCl in some of them) [77]. 
The electrodes were positioned in the glass vessel with the NaCl subsaturated water solution; separation 
between contact windows measured 1.5 cm. The vessel was rigidly encapsulated so that evaporation as 
well as atmospheric pressure variations were fully eliminated. The vessel was positioned in the Dewar, 
which in turn was info the thick-wall case. For small residual temperature variations control the sensor of 
temperature (allowing measuring it continuously accurate to 0.001 K) was positioned between internal 
wall of the Dewar and the electrode vessel. The quantity  was measured continuously (with time 
resolution 0.1 - 1m) accurate to 0.5 μV. In Figure 5.1 the simplified sketch of the electrode detector is 
presented. Complicated internal design of the electrodes is not shown here. Detailed description of the 
electrode detector construction and design is presented in References [18,24]. 

U

The special investigation was dedicated to the problem of local temperature influence (which was the 
only noticeable noise-forming factor not completely suppressed by screening) and its mathematical ex-
clusion [78]. As a whole the design of detector ensures elimination of the all local impacts, except cosmic 
ray variations. The special investigation [79] had revealed some retarded influence of these variations on 
detector signal, but it proved to be negligible as compared with nonlocal influence of other sources (to be 
discussed in Chapter 5). 

The theory of the photomultiplier detector is simpler. We start from known formula of the entropy per 
electron: 

5

2

q
S

kT


  ,                                    (5.9) 

where q  is the work function of the cathode. From Richardson-Dushman equation we have: 

 ln 1 2ln ln
q

A R T
kT


      j ,                       (5.10) 

where 2 2e πA mk  ,  is reflection coefficient,  is emission current density. Substituting Equa-
tion (5.10) into Equation (5.9) we derive the entropy production: 

R j

j
S

j I

I
   

 ,                                  (5.11) 

where I  is the dark current. In small amplitude approximation we obtain the working formula relating 
the measured signal with left-hand side of nonlocality equation: 

I
S

I


   .                                   (5.12) 
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Figure 5.1. Simplified sketch of the electrode detector. C, case (thickness of the walls is 20 mm); D, Dewar; V, ves-
sel with the electrolyte; E, electrodes (complicated internal design is not shown); T, temperature sensor. Materials: 
shade, caprolon; doubleshade, ebonite; dots, air; unshaded space, vacuum. 
 

The noise-forming factors (local impacts) influencing on I  to be excluded are: temperature, electric 
and magnetic field, illumination, moisture, feed voltage instability and cosmic ray variations. 

The photomultiplier detector is constructed similarly to the electrode one on the base of photomulti-
plier with the Cb-Cs cathode of small area. The photomultiplier was positioned in the similar Dewar with 
its bleeder of dynode feed voltage and with the temperature sensor (allowing continuous measuring ac-
curate to 0.001 K) and the additional external electric field screen. The simplified sketch of the detector is 
presented in Figure 5.2. The feed voltage was double stabilized accurate to 0.1%. The quantity I  was 
measured continuously (with time resolution 0.1 - 1m) accurate to 0.05 nA. Detailed description of the 
photomultiplier detector construction and design is presented in Reference [24]. 

Analogously to the electrode detector, only noticeable noise-forming factor not completely suppressed 
by screening was local temperature influence. Its influence has specially been investigated and the algo-
rithm of its mathematical exclusion has been developed in Reference [78]. Next, a possible noise-forming 
factor could be the magnetic field variations, which therefore were measured by the quantum magne-
tometer. At last a possible influence of cosmic ray variations has specially been investigated [79] with the 
similar result as in the case of the electrode detector—this (retarded) influence turned out negligible as 
compared with nonlocal influence of other sources. 
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Figure 5.2. Simplified sketch of the photomultiplier detector. PM, photomultiplier; BU, bleeder of dynode feed 
voltage U; TS, temperature sensor; 1, external foam plastic case; 2, light screen; 3, Dewar; 4, electrostatic copper 
screen. 
 

The theory of ion mobility detector is rather complicated [22], but the final formula is like (5.12): 

d
S

d


   ,                                     (5.13) 

where the signal  in that case is electric current dispersion in the electrolyte cell. d
The noise-forming factors influencing on  to be excluded are temperature, pressure, chemism and 

concentration of the electrolyte, electromagnetic field and feed voltage instability. 
d

The ion mobility detector measures measuring fluctuation of conductivity (corresponding to fluctua-
tion of ions mobility) in the hermetic electrolyte cell with stabilized and precisely measured temperature. 
These fluctuations were measured as high-frequency (5...15 kHz) voltage fluctuation on the cell under 
applied stabilized low-frequency (3 Hz) current. The dispersion  was computed over every 1m time 
interval. The simplified sketch of this detector is presented in Figure 5.3. The steps taken to screening of 
the detector against the local influences were comparable with those of the electrode and photomultiplier 
ones. Detailed description of the ion mobility detector construction and design is presented in References 
[22,24]. 

d

Two experimental setups for study of macroscopic nonlocality had been constructed. The Geoelectro-
magnetic Research Centre (GEMRC) setup consists of the nearby C-Mn electrode and photomultiplier 
detectors, another (Ag-AgCl) electrode detector spaced at 300 m, and the apparatus for the local impacts 
control. The latter includes feed voltage, internal and external (lab) temperature and magnetic field. In 
addition hourly data on cosmic ray counting rate and atmospheric pressure were taken from spaced at 300 m  
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Figure 5.3. Simplified sketch of the ion mobility detector (by Morozov [22]). 1, plastic plug-and-socket case; 2, 
graphite electrodes; 3, thin film with small orifices; 4, electrolyte. 
 
IZMIRAN neutron monitor. The Bauman Moscow State Technical University (BMSTU) setup created by 
A.N. Morozov is spaced at 40 km from the GEMRC one and includes two nearby ion mobility detectors 
and the accompanying apparatus, continuously measuring the lab and outdoor (atmospheric) temperature. 

Remember that quantum nonlocality violates strong causality and obeys weak one. It means that if a 
source process is noncontrolled (random), we can observe both retarded and advanced correlations. But if 
an observer initiates a source-process, only retarded correlation is possible. That is why the most inter-
esting source processes are random large-scale natural ones. Most of the experiments described in Chap-
ter 6 were devoted to study detectors reaction on various geophysical and astrophysical processes with 
big random component. The experiments with controlled lab artificial source-processes had also been 
conducted, though they had, of course, demonstrated only retarded correlation. 
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6. Results of the Experiments 
 

The experiments with natural source processes were long-term (with duration of continuous series not 
less than several months). They were conducted in 1993-1996 with the electrode detector (at this first 
stage without local impact control); in 1996-1997 with the all 3 detectors of the GEMRC setup (with full 
local impact control) and in 1997 with BMSTU setup; next after 2001 again with GEMRC and BMSTU 
setups. Except the detector signals the following parameters were measured: internal detectors tempera-
ture (residual variations strongly suppressed by thermostating system) accurate to 0.001 K, external (lab) 
temperature—0.1 K, outdoor (atmospheric) temperature—0.1 K and geomagnetic field –0.01 nT. Sam-
pling rate was chosen from 1m to 1h. In addition hourly data on cosmic ray counting rate (as one more 
reasonable noise-factor) and atmospheric pressure (as index of nonlocal influence of synoptic activity) 
were taken from nearby IZMIRAN neutron monitor. Standard international data on the global geomag-
netic (the Dst indices), ionospheric (the set of disturbance indices), and solar (the radio wave flux at 9 
standard frequencies within range 245…154,000 MHz and also X-ray flux from GOES satellite) activity 
were taken to study the most large-scale processes. 

Data were processed by the methods of causal, correlational, regressional and spectral analysis. The 
main point is calculation of conditional and marginal probability distributions of detector signals (X) and 
source processes indices (Y) by the time series. The Y series where taken with enough long “tails” before 
and after the X series ends to provide calculation of the distributions and their entropies in corresponding 
time shift range. Other processing methods were standard. 

The experiments with controlled lab artificial source-processes were conducted in 1999, when we had 
wide experience of experimentation with natural source-processes. But logically they should be discussed 
first. 

 
6.1. Nonlocality of the Controlled Dissipative Processes 
 
6.1.1. Statement of the Problem 

Although the experiments with artificial sources were conducted before [1,80-83], the level of their 
rigour was low, and in addition, the problem itself was badly formulated, therefore the entropy produc-
tion in the source was not controlled. Our experiment aimed replenishment of this gap—measurement of 
the nonlocality effect of the artificial dissipative processes in the enough rigour setting. 

On the basis of experience of the experiments with the natural sources described in the next sections 
we had selected the most appropriate electrode detector. The detector design excludes practically all the 
rinds of local impacts except the temperature variations, which can be essentially attenuated, but in prin-
ciple cannot be eliminated completely. It restricts the source-process energy from above, because all the 
dissipative processes are accompanied by the temperature effect. On the other hand, this energy is re-
stricted from below by the level of (nonlocal) noise inevitably taking place in the measuring device.  

Within those limits nonlocal influence of an artificial source on the probe-process can, however, to be 
compatible with nonlocal influence of the geophysical processes. The influence of latter’s is excluded by 
the differential scheme of measurement. Two spaced detectors are used; the source-process is placed near 
one of them at the distance small as compared with the space. The differential signal is measured. 

The optimal energy of the source is near the upper bound of above mentioned range. Therefore in ad-
dition to thermo-insulation, the precise control of residual internal temperature difference is necessary.  

It should be noted the principal limitation of the experiments with the artificial sources: due to princi-
ple of strong causality the advanced part of the signal is unobservable. For the random natural sources, as 
it is described in the reminder of this chapter, the advanced part is observed; moreover, owing to less ef-
ficiency of its screening by the intermediate media, it is essentially prevailed over the retarded one. Only 
for the advanced part the estimation of transaction cross-section has practically been gained. Therefore a 
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direct quantitative comparison of these two types of experiments for the present is hampered. The main 
purpose of the experiments with the artificial sources is verification of universality of the mechanism of 
nonlocal transaction and study of its statistical properties. 

 
6.1.2. Experimental Setup 

The setup scheme is presented in Figure 6.1. The source-process is sited at the distance  m 
from the detector measuring the difference of self-potentials 1 , inside of which there is also a sensor of 
the internal temperature 1 . The identical detector 

0.5r 
U

T  2 2U T
U U

 is sited at distance  m. Subsequently 
the signals pass through the subtraction schemes 1 2

4l 
 , 1T T2  and after amplification by the preci-

sion amplifiers A  feed into the recorder U  and T . 
The processes of mixing, isobaric heating and phase transition-melting and evaporation were used as 

the dissipative source-process. The most effective proved to be (as one should have expected by ΔS value) 
the process of water boiling. There fore in the major series of experiments the following source was used: 
the glass vessel in which the water with initial volume 2 l was brought from exactly measured initial 
temperature (approximately equal to air temperature in the laboratory) by 1.2 kW heater to the boiling 
point. Boiling lasted up to evaporation of 1 l, after that the heater was turned off. 

 
6.1.3. The Performance of the Experiment 

The preliminary stage lasted about a year and included study of the inherent noise of the setup, choice 
of optimal measurement regime and testing of different variants of the sources. 

The main stage of the experiment was carried out during three months (August-October 1999). A total 
of 50 experiments had been carried out. The main information was gained at the many times repeated 
experiment in the exactly same performance. The source-process was phase transition (water boiling), 

m. After turning on the heater the water reached boiling-heat in 12 - 14 minutes (Depending on 
the lab temperature), boiling lasted 40 minutes. The elementary calculation gives the full entropy change 
in the source nat. Change of the lab temperature 10 K tells only in the third place of this 
value. The main part of  contributes the entropy change in the phase transition water-vapour 
( ). Thus  of the source was equal to the mentioned constant value for the all experi-
ments.  

0.5r 

4.39 10

265.85 10S  
S

S26 nat

In connection with long relaxation time it was possible to conduct correctly not more than one experi- 
 

 

Figure 6.1. Scheme of the experimental setup. S, source-process;  and , near and distant detectors;  and 
, internal temperature sensors;  and 

1U 2U 1T

2T 1U U 2 21T T , subtraction schemes; A , amplifiers;  and U T , re-
corders;  m (1 m), distance from the source to the near detector, 0.5r  4l   m, distance between the detectors. 
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ment a day. From the beginning to the end of the series the lab temperature smoothly fell from ~30˚C 
(the beginning of August) to ~10˚C (the end of October). Space-heating and another heat sources were 
absent in the laboratory. 

47 experiments were conducted at the fixed position of the source relative to both the detectors For 3 
experiments the souse was transferred to the other detector at 0.5r  m to make sure that it changes the 
sign of differential signal (at the same subtraction scheme). 

In the periods between the experiments the measuring device of the setup worked in the continuous re-
gime. It allowed avoid a possible influence of device warming-up at every experiment. In addition, the 
continuous record of  allowed to be sure in essential exceeding of the effect of artificial process 
impact above the random noise. 

U

 
6.1.4. Results and Discussion 

According to Equation (4.4) an increase of the entropy in the source implies its increase in the 
probe-process (varying inversely with the square of the distance). In turn, from Equation (5.8) it corre-
sponds to a decrease of  Thus from the theory it follows .U 0 0S U     . 

The main qualitative result of the experiment is that nonlocal response of the detector is reliably re-
corded and its sign corresponds to the theoretical prediction. The order of mU  magnitude is a millivolt. 
The local heat impact of the source exists, but it is negligible as compared to the nonlocal one. The inter-
nal temperature of the near source detector increases, only of some thousandth of Kelvin. At known tem-
perature coefficient of the electrodes (0.19 mV/K) it would correspond to U  change of order a mi-
crovolt that is the nonlocal signal stands out above the local one over three orders of magnitude. 

Therewith the main surprise turned out very big quantitative scatter of the signal parameters under the 
strictly same conditions of the impact. The signal magnitude, retardation, time of drop and rise changed 
from one experiment to other over wide limits and these changes were not related with any changes of 
the external conditions (meteorological, geomagnetic, etc). The only change in the lab conditions was 
above mentioned smooth fall of the temperature from the beginning to the end of three-month series of 
the experiments. However the scatter of subsequently collected results had absolutely chaotic nature, the 
same at the beginning and at the end of the series. There was only some tendency to the rise of signal 
mean magnitude from August to October that corresponded Kozyrev result [1]. In spite of chaotic nature, 
the signal parameters proved to be related by the tolerant statistical regularities. 

An example of the experiment registrogram is shown in Figure 6.2. It is seen that 1h10m later after 
shutdown of the heater the sharp decrease of ΔU occurs ( 5.5mU  

T

 mV) and subsequently— 
many-hours relaxation to the starting level. The parallel ΔT record shows that beginning of the detector 
response approximately coincides with entry of the heat wave, but quantitatively the temperature change 
is negligible:  K. It would correspond to the decrease of 0.008T    owing to the classical local 
mechanism by 0.0011 mV which is incompatible few as compared to the measured signal. Relaxation 
time of the temperature disturbance T , as it is seen in Figure 6.2 is incompatible longer than relaxa-
tion time of . Coincidence of entrance time of thermodiffusion wave and beginning of the nonlocal 
response conforms to interpretation of Equation (4.4): nonlocal nature of the response is related with the 
diffusion entanglement swapping. In Figure 6.2 the subtle detail is also contained, which was observed 
approximately in a half of the experiments—it is the small wave-like depression of ΔU before the begin-
ning of the main drop. Nature of this precursor is unclear. 

U

The mean, over the all experimental series, parameters of the signal are: 
 2.46 1.72mU      mV; retardation of the effect beginning relative to shutdown of the source 

1 97 36    min; retardation of the minimum mU  relative to shutdown of the source  

2 149 47    min. Relaxation time constant is about 360 min. Time of the practical end of effect was 
determined the least exactly. Approximately mean time of redressing (from mU U    till the practical 
end of effect) proved to be 2 18t t , where t1 is time of the drop U  ( 1 2 1t    ). 

Turn to description of the mentioned statistical regularities. 
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Figure 6.2. Example of the experiment record. U , differential detector signal; T , difference of the internal de-
tector temperatures; , time in hours; 1) instant of heater turning on; 2) instant of boiling beginning; 3) instant of 
heater turning off. 

t

 
First, the curve of  is essentially asymmetric. The equation of regression  on  (in minutes) 

is: 
U 2t 1t

2 18.76 126t t                                    (6.1) 

at correlation coefficient . 0.91 0.05
Second, this asymmetry is proportional to signal magnitude mU  (in mV): 

1 2 3.2 0.39mt t U                                  (6.2) 

at the same correlation coefficient. 
Third, there is a nonlinear relation of full duration of the effect 1 2et t t   with the signal magnitude: 

 exp 1e s mt t U E     ,                            (6.3) 

where the empirical estimation  min, which is equal to duration of the main process – the phase 
transition in the source. The empirical estimation of the parameter  has shown that to the second 
place  is determined by the following combination of the factual detector parameters: 

40st 
E

E

6kTg
E

q
 ,                                    (6.4) 

where  A·s (univalent ions of the electrolyte), 191.6 10q   293T   K (mean detector temperature), 
 (variation coefficient (0.g  013  g U U ) of given detector). From Equations (6.3), (6.4) and (5.8) 

it follows that full duration of the effect is determined only by duration of the impact and the double layer 
entropy: 

 exp 1e st t S   .                                (6.5) 

Forth, akin to Equation (6.3), the empirical relation has been established between  and et 2 : 
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  2exp 1e st t    ,                              (6.6) 

where min, 37st  49  min. Comparison of Equations (6.6) and (6.3) shows that increase of the re-
tardation 2  corresponds to increase of the magnitude mU . Therefore disturbance of the equilibrium 
of detector is preceded by some process of the energy accumulation.  

The most interesting is empirical relation (6.5). Rewriting it as follows: 

ln e s
d

s

t t
S

t

 
  

 
 .                                 (6.7) 

One can note that at s e  the right-hand side of (6.7) equals —the upper limit of the en-
tropy defined in the first layer of the foliated space of probability operator definition [14]. In other words 

 is the entropy defined by the normalized curve 

t t 1sup S

1S  U t  considered as a probability distribution. So 
the equality 

1supdS  S                                     (6.8) 

establishes the direct relation between space and time entropy changes—between redistribution of the 
charges in the double layer and time distribution of U . 

Thus in spite of the large scattering of the signal parameters in the identical experiments, these pa-
rameters are related by quite defined and important regularities.  

The qualitative results of the experiment on measurement of the nonlocality effect of artificially exited 
dissipative processes confirm its universal nature and agree with theoretical view upon macroscopic en-
tanglement. 

 
6.2. Nonlocality of the Natural Dissipative Processes 
 
6.2.1. Correlation of the Different Detector Signals 

So in our experiments with natural source processes we had long-term measurements with 5 detectors 
of 3 types. Their signals proved to be rather high and synchronous correlated. For any pairs maximum of 
correlation function  achieves 0.7 - 0.8 at time shift r 0  . 

Above all it had a meaning to compare our measurements of  (the main C-Mn electrode detector of 
GEMRC setup) with ones on the remote at 300 m r

 (additional Ag-AgCl electrode detector). It imme-
diately allowed establishing, whether or not the variations of these quantities were merely the internal 
noises. The correlation coefficient turned out equal to 0.68 ± 0.01. It is possible only one common trivial 
cause—the internal temperature. The partial correlation coefficient by eliminating influence of the inter-
nal temperature U  of the detector  turned out equal to 0.74 ± 0.01. Causality function 

U
U

T U   proved 
to be exactly 1 that is the signals are formed by some common causes. But mathematical exclusion of the 
single possible common local impact not completely suppressed by screening, namely internal tempera-
ture, leads to correlation increase. Therefore local influence of the temperature is not a common cause of 
the correlated potential variations. Other non-suppressed local factors—the magnetic field and cosmic 
rays proved to be not influencing on the detectors within their sensitivity at all. 

Level of correlation proved to be independent on type of detectors and on their separation within 40 km. 
In Figure 6.3, for example, the correlation function of the most spaced photomultiplier and ion mobility 
detectors is presented. Maximum of correlation corresponds exactly to zero time shift. 

A fragment of synchronous 250-days signal records of the photomultiplier detector I, and ion mobility 
one d is shown in Figure 6.4. Again causality function proved to be exactly 1. 

Such correlations can be explained by some large-scale common causes (geophysical or astrophysical 
processes), but their influence cannot be local. The correlations can be explained only in Cramer’s spirit 
[16,62]: by exchange of the detectors and some large-scale common sources (geophysical or astrophysi- 
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Figure 6.3. Correlation function of photomultiplier detector signal  and ion mobility one d. The I   is time shift 
in days. Maximum of correlation corresponds exactly  . Data are low-pass filtered ( days). 20T 
 

 

 

Figure 6.4. Synchronous time variations of photomultiplier detector signal I and ion mobility one d. The t is time in 
days.  
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cal processes) by the pairs of retarded and advanced signals, that is to be nonlocal. 
 
6.2.2. Relation of the Detector Signals with the Internal and External Temperature 

First of all, temperature variations of the environment lead to its entropy changes. The problem is com-
plicated by trivial local influence of small residual variations of the internal temperature on the probe 
process. In Figure 6.5 an example of correlation function of the electrode detector signal ant its internal 
temperature is shown. Negative time shift τ corresponds to retardation of the signal relative to tempera-
ture, positive one – to advancement. Due to passive thermostating, dispersion of the internal temperature 

U  in the Dewar of the detector U is very small (it is decreased on two orders relative to one of the external 
lab temperature e ). Indeed, there is small retarded ( ) correlation peak  
(corresponding to the normal negative temperature coefficient of the electrodes  V/K [77]). 
So, there is a small retarded correlation of trivial origin. But in positive 

T
T 20.4h   0.33 0.02

UUTr   
 141 9 

  domain, where correlation 
must be classically damped out, there is unusual big correlation maximum  (anomaly 
positive sign) at advancement . 

0.87 0.01 
UUTr

11.8h 
In Figure 6.6 the same example in terms of the independence functions is shown. Just at the same time 

shifts there are two minima of the independence functions. The advanced minimum is deeper. More ex-
actly 0.02

0.01min 0.50
UU T   at  and i  20.4h   0.01

0.00min 0.43
UU Ti 

  at  (the deviations of 12.8h    
from 1 turned out insignificant). 

For the short disturbances of  their advancement relative to  one can note without any proc-
essing, directly in the records (Figure 6.7). 

U UT

Turn to connection between the detector signal and the random variations of external lab temperature 
(Figure 6.8). The independence functions have 3 minima at the shifts 0.0 and  hours. The ad-
vanced minimum is deepest and therefore can not be explained by any periodic effect. This picture cor-
responds to theoretical prediction: we observe symmetrical retardation and advancement, the advanced 
signal is stronger due to the less absorption by the intermediate medium. Availability of apparent syn-
chronous minimum can be explained interference of the retarded and advanced signals. But is the con-
nection nonlocal? 

27.0

 

 

Figure 6.5. Correlation function of detector signal U and internal temperature TU.   Is time shift of TU relative to U 
in hours. 
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Figure 6.6. Independence functions of detector signal U and internal temperature TU. 
 

 

Figure 6.7. An example of synchronous records of the detector signal  and . U UT
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Figure 6.8. Independence functions of detector signal  and external lab temperature . U eT
 

The experimental values of independence functions are: at  27.0h   0.07
0.000.81

eU Ti 
 , 0.10

0.000.77
eT Ui 

 ;  

at  0.0h  0.10 0.13
0.00 0.000.77 ,  0.72

e eU T   ; at  T Ui i   27.0h  0.11
0.000.75

eU T  , i  0.12
0.000.71

eT Ui 
 . Therewith 

independences of  and e  have only single normal minimum: at  UT T   11.5h  0.03
0.000.77 ,

U eT Ti 
  

0.05
0.000.84T T




e U e U

As there is no any heat source inside the detector, local connection of its signal with temperature works 
along the causal chain: e U . According to Equation (4.16) sufficient condition of nonlocality 
is violation of such Bell-like inequalities: 

, i.e. . T Ti

T T U 

   | | |max , ,  max ,
e U e U e e UU T T T U T T U T T T Ui i i i i i 

U
,                      (6.9) 

Substituting the experimental values of independence functions, we conclude that there are two chan-
nels of connection between the external temperature and signal: classical local retarded channel and un-
usual nonlocal advanced channel. For the former at 0   left In Equation (6.9) is fulfilled, for the last 
at 0   0 right In Equation (6.9) is reliably violated. 

But symmetry by   for  with asymmetry for  calls for analysis. The space-time dia-
gram of transaction of e U  is schematized in Figure 6.9 

,eT U
, ,U

,UT U
T T ret  and adv  denote times of informa-

tion passage along the retarded and advanced channel respectively, other notations are clear from the fig-
ure. e  and UT  both are connected with  by pairs of the symmetrical retarded and advanced chan-
nels, while  is connected with  only by retarded one, it follows from geometry of this scheme that  

T U

eT UT
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Figure 6.9. Diagram of transaction of the external (lab) temperature , internal temperature  and self potential dif-
ference of the electrodes . Scales of distance 

eT UT
U x  and time  are arbitrary. The t ret  and adv  are respectively retar-

dation and advancement of the temperatures (  or ) relative to . The UT eT U ret  and adv  are differences of respective 
ret  and adv .  

 

         adv adv adv adv ret ret
e U e U UU T U T U T U T T T      e

       .       (6.10) 

But       2ret ret ret ret
U e e UT T U T U T      . Therefore 2adv ret  . Substituting mentioned 

above values of  , one can be content with 2adv ret   accurate to 7%. Therefore the diagram of Fig-
ure 6.9 quantitatively explains the positions of all the peaks of independence functions. 

Since there is some influence of e  on the detector signal, and as mentioned in Section 6.2.1 the signals 
of different detectors are synchronously correlated, we should verify a possibility that that the lab tem-
perature variations e  is the trivial common cause of electrode  and photomultiplier 

T

T U I  detector sig-
nal variations. The set of partial correlations: 0.78 0.01

eUI Tr  , 0.24 0.02
eUTr I  , 0.09 0.02

eIT U  r   , 
in comparison with simple pair correlations: 0.75 0.0UIr 1  , , , 0.49 0.02

eUT  r 0.45 0.02r  
eIT
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clearly shows that e  is not such a common cause. Another evidence is demonstrated in Reference [24] 
good similarity of the amplitude spectra of 

T
I  and U , while the spectrum of  is quite different. eT

T 

 
6.2.3. Relation of the Detector Signals with the Synoptic Activity 

Consider now the variations of the atmospheric temperature a  as an index of the synoptic activity. 
Taking into account passive thermostating, the local causal connection   a e UT ust lead to 
weak correlation U  ith aT  very long (many-days) retardation. Following usual geophysical prac-
tice of study of the large-scale processes, for exception of a possible influence of the small-scale inho-
mogeneities, compare measurements of U and aT at the remote sites. Under a typical horizontal tem-
perature scale (a few hundred km), distance between the GEMRC and BMSTU setups (40 km) is quite 
optimal. That is why the measurements of  near BMSTU setup have been taken for comparison with 

. 

T
T U  m

w at 

 

aT
U

The most important feature of  dependence proved to be a dramatic exceeding of correlation at 
advancement of  relatively aT  (

, aU T
U 0  ) above weak (less than 0.4) retarded correlation ( 0  ), as it 

is shown in Figure 6.10. Next there are five maxima 
aUT  at r   equal to −25, −13, 0, 13, 28 days. Sym-

metry relatively 0   is exactly analogously described above relation  with eT . The greatest cor-
relation is at : 

aUT . The causal analysis has shown corresponding minima of the 
independence function (at  

U
13d  0.r

 
72

13
5 0.00 

d
5

0.02
0.001.02
0.72 0.01

aU Ti   , 
aU Ti i

aT U

aT
 , that is ). Thus 

there is statistical reliable advanced connection of  with . 
aT U

U
 

 

Figure 6.10. Correlation function of the detector signal  and atmospheric temperature . TheU aT   is time shift 
of  relative to U  in days (negative aT   corresponds to retardation of U relative to , positive aT  —to ad-
vancement). 
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Typical space scale of the temperature is a few hundred km. More appropriate synoptic activity index 
is the atmospheric pressure, which scale a few thousand km. In Figure 6.11 an example of causal analy-
sis of the electrode detector signal and pressure is shown. At advancement 69 days ( ) 
there is the deepest independence function minimum and the highest causality function peak (

0.78 0.02UPr   
0.30U Pi  , 

2.3P U U Pi i   . The synoptic activity is a cause of the detector signal, but they progress in reverse 
time! 

For comparison the correlation function by the same data is presented in Figure 6.12. It is seen that on 
most part of the   interval correlation is insignificant ( 0.4UPr  ). There is a peak  
exactly at the same  as in Figure 6.11. 

0.78 0.02UPr   
69d 

That result is independent on type of detector. In Figure 6.13 the same example with the photomulti-
plier detector is shown. The picture is alike and advancement is almost the same, it equals 73 days. Cor-
responding correlation peak is . 0.86 0.01IPr   

It is even possible to give the simplest forecast. In Figure 6.14 fore the same example time variation of 
pressure (passing a cyclone) and preceding on 73 days variation of the dark current are shown. 

 
6.2.4. Relation of the Detector Signals with the Geomagnetic Activity 

It is beyond reason to consider electrode detector signal  depended on magnetic field  by any 
way. Therefore detection of relation of the potential with the Earth magnetic field variations would be a 
good test for the hypothesis (4.4), as these variations could be easy related with electric current dissipa-
tion in the source (magnetosphere). Special experiments on influence on the detector of  by the artifi-
cial magnetic field (up to 10−3 T) in the frequency range from 0 to 1 Hz had confirmed absence of any 
response of  within sensitivity of the apparatus. 

U B

U

U
Analysis of the first long time series with the setup quantum modulus magnetometer (1996-1997) have 

shown existence of stable correlation 0.56 0.01UBr     with great advancement U  relative to  B
 

 

Figure 6.11. Independence  and causality i  functions of the electrode detector signal  (March-April, 1997) 
and the atmospheric pressure . The 

U
P  is time shift of  relative to U  in days. P
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Figure 6.12. Correlation function corresponding to Figure 6.11. 
 

 

 

Figure 6.13. Independence  and causality i   functions of the photomultiplier detector signal  (March-April, 
1997) and the atmospheric pressure . The τ is time shift of P relative to I in days. 

I
P
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Figure 6.14. The variation of the detector signal  forecasting variation of atmospheric pressure  with ad-
vancement 73 days. The origin of time corresponds to March 24, 1997. 

I P

 
( ) (Figure 6.15). In the causal analysis at this 48.5h    there is minimum 0.02

0.010.79B Ui 
 ,   differs 

from 1 insignificantly. Thus relation  and  is statistically reliable, but both from prior reasons and 
from advancement U relative to  it can not be result of a local influence  on U . Therefore  is 
an indicator of some process interacting with . 

U B

U
B B B

The obtained two-day advancement is close to time of the solar wind propagation and therefore this 
could suggest that self-potentials correlate more likely with the wave component of the solar activity than 
with the geomagnetic variations. But in the next I shall demonstrate that advancement of correlation with 
the solar activity is far more. 

In the synchronous amplitude spectra of  and  (described in detail in References [17,18]) there 
is a good similarity, in particular, positions of the main long-period peaks are almost coincided (80h), po-
sitions of pikes at periods 32.0h, 15.0h, 12.0h, 6.15h and 5.33h are exactly coincided. In The period (T ) 
dependence of amplitude ratio 

U B

U B  is approximated by formula 2,  19U B m s T . 
We could take the magnetic field measured by setup’s high quality quantum magnetometer, but it 

turned out that correlation of the detector signal was bigger and had more advancement with Dst-index of 
global geomagnetic activity, reflecting the most large-scale dissipative processes in the magnetosphere. 

The process of geomagnetic activity is weaker as compared with synoptic one described above, and 
especially solar one described below, but the most convenient for interpretation. The fact is that our de-
tectors are insensitive to the variable magnetic field, but this field can easily be related with the entropy  
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Figure 6.15. Correlation function of the detector signal  and magnetic field U B . 
 
production in the magnetosphere. Certainly, as to detector signal is formed by the different sources, data 
must be appropriately filtered so as to suppress other contributions. The problem of signal separation is 
quite standard and I shall not describe it in detail. The separation of contributions from the solar and 
geomagnetic activity is rather sophisticated because the former is clear cause for the latter, and the former 
is strongest among other sources (Section 6.2.5). Similarity and distinction of contributions from synoptic 
and geomagnetic activity are demonstrated in Figures 6.16 and 6.17. 

For this example the series length 7.3 months provides high resolution 2·10−4 h−1, but for convenience 
Figure 6.16 is plotted with less resolution. There is a good similarity of  and : the 67 spectral 
peaks coincide. Similarity of  and  is worse (the 25 peaks coincide). The number of  peaks 
coinciding either with  or with  equals 85. So the spectral structure of  and  is differ-
ent and separation of their contribution is possible. 

U Dst
U P

P
U

Dst P Dst

In Figure 6.17 the same spectra are shown with maximal resolution in the low-frequency domain. The 
greatest peaks correspond to the periods 27 and 13.5 days (U  and ), and 90 and 46 days (U  and 

). The first couple is obviously related with the solar rotation (and corresponding variability in the 
geomagnetic activity), the second one is related with synoptic activity. 

Dst
P

For the analysis of the anticipatory effects the periodic components were suppressed by filtration and 
we consider further only the random component. The matter of fact is advanced correlation is the prop-
erty only of random processes. If deterministic, i.e. in the given case, periodic component of variation is 
not suppressed, then anticipatory effect might be amplified by autocorrelation. It would be useful in prac-
tice, but here we are going to study namely advanced crosscorrelation and therefore we have to suppress 
that component. The main periodicity in the geomagnetic activity related with solar rotation synodic pe-
riod (about 27 days) and its harmonics, and corresponding maxima are pronounced in the detector signals. 
We have to suppress periods equal and less than solar synodic period. Indeed due to nonlinearity, related 

 spectral lines have periods some more the synodic one (up to 32 days). Investigation of , , Dst Dst U I  
and  spectra by our experimental data allowed to select optimal low-pass filtration as . 
But in the long period domain there is correlated nonlocal interference from the solar activity. Moreover, 
direct influence of solar activity is prevailed over geomagnetic one [26-29]. Although for possible future 
practical application of nonlocal correlations for direct forecast of geomagnetic activity such interference 
is even useful (because geomagnetic activity is caused by solar one and all existing methods of long-term 
forecast of the former are indirect, based on forecast of the latter), we tried as far as possible to attenuate 
it. The matter of fact, due to nonlinear effects of generation of the geomagnetic activity in response to the  

d 28 31.8d dT 
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Figure 6.16. Amplitude spectra of ,  and  in the period range from 10 hours to 111 days, September 
1993-April 1994 (the  is period in hours, 

U Dst P
T f  is frequency in inverse hours). 

 
solar one there are (random) long period spectral maxima of , while amplitudes of any index of so-
lar activity increase to long periods, at least to year, almost monotonously (there are not definite spectral 
lines in the mentioned range). Therefore we can attenuate influence of solar activity by high-pass filtra-
tion m , where m  is selected individually for each time series as period shorter than which  
spectrum has significant own random maxima. Due to annual period of geomagnetic activity m  usually 
was equal to the first or the second annual harmonic period. This procedure also provided suppression of 
the annual meteorological contribution to the detector signals. Thus the data were processed by 
wide-band filtration. There was only one time series, for which there was not a need the high-pass filtra-
tion to detect  contribution. 

Dst

T T T Dst
T

Dst
The qualitative results are the same as in Section 6.2.3: advanced correlations exceed retarded ones and 

level of correlation increases along source space scale. 
Thus for magnetic field measured by setup’s magnetometer advancement equals 2 days, while for 

-index of global geomagnetic activity, reflecting the most large-scale magnetosphere current systems 
it equals about month (it is not stable value; for different realizations and for different period range posi-
tion 

Dst

 of the main peak of  ,  or  may be from 8d to 140d [19,20,25-27]). Value of maximal, i.e. 
advanced, 

i r
  does not exceed 1.15 (expectation errors of  and i   are about 1%). The level of ad-

vanced correlation with  after appropriate filtration, increasing signal/noise ratio (the noise includes 
direct influence of the Sun on the detector signal), can achieve 0.70 - 0.95. Herewith correlation time 
asymmetry (defined as 

Dst

max max adv retr r  in the shift  range ± 371d are within from 1.10 ± 0.01 to  
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Figure 6.17. The same as in Figure 6.16 with maximal resolution in the period range from 2.1 to 111 days. 
 
2.64 ± 0.01 [20,26]. The typical example of correlation function showing advanced detector response, 

 at , is presented in Figure 6.18. This example has been computed by the 
longest available series: the electrode detector signal  one with duration 2 years and 9 months (10/26 
1994-07/24/1997); the  series was taken from 1 year before to 1 year latter relatively to ends of  
one. 

max 0.70 0.02UDstr   42d 
U

Dst U

The obvious forecasting applications will be developed in the last section. For the present we will con-
fine ourselves by wittingly primitive simplest demonstration of the forecast possibility by shift the opti-
mal filtered time series on corresponding to Figure 6.18 42   days (Figure 6.19). 

Mentioned 42 days is rather typical value of the main correlation maximum advancement. Another 
typical value also turned out 130d. But for the different time series it may vary considerably. For example, 
in Figure 6.20 is the case when it equals 60 days. But always the level of advanced correlation is quite 
high (here 0.72 ± 0.01). And correlation asymmetry that is ratio of maxima of advanced to retarded cor-
relation is always more than 1. For this example it equals 2.64 ± 0.01. 

Turn to the quantitative interpretation. Taking into account complexity and, as a rule, poor knowledge 
of large-scale natural source-processes parameters, it is extremely difficult to verify theoretically values 
of time shifts by the detector signal and standard geophysical data. But it is possible to hope on order es-
timation of   in Equation (4.4), i.e. on verification of effect magnitude. The process of geomagnetic 
activity is the most convenient, because it admits to use in the right-hand site of Equation (4.4) the sim-
plest model for the source entropy production density: 
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Figure 6.18. Correlation function of the detector signal  and geomagnetic activity  ( 364 days). U Dst 28T 
 

 

Figure 6.19. The detector signal (μV) forecasts the random component of geomagnetic activity  (nT) with 
advancement 42 days. The origin of time count corresponds 5/10/1995. 

U Dst

 90



Chapter 6. Results of the Experiments 

 

0 0 

 

Figure 6.20. Correlation function of the detector signal  and geomagnetic activity  (  days). U Dst 31.8T 
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2

,                             (6.11) 

where  is electric field, E f  is frequency,   is source medium resistivity, sT  is source medium 
temperature, Z  is impedance, F  is magnetic field (hereafter it is more convenient to use 0F B  ). 
The Z  and   we may consider for simplicity as scalars. By substituting Equation (6.11) into Equa-
tion (4.4) further simplification is possible, using the known properties of the electromagnetic field of the 
magnetospheric source. First, the field F  is well approximated by plane wave, therefore it is possible to 
factor out the s  from the integral, and, restricting our consideration to the spectral amplitudes, we re-
duces this integral simply to thickness of dynamo-layer. Second, use quasi-steady-state approximation of 
the plane wave impedance of homogenous medium:   2

02πZ f f   . Dependence on   disappears, 
and for spectral amplitudes it is easily to show, taking into account Equations (5.8), (5.12) and (5.13) 
[17-19,24] that following ratio is frequency-independent: 

 
 2

U f
const

F f
                                   (6.12) 

and analogously for  I f  and . Equations type of (6.12), of course, are approximated, because 
above simplest expression for |Z(f)|2 is rather rough approximation. 

 d f

But the geomagnetic activity, as a separate source process, has a flaw—it is close correlated with solar 
activity especially at long periods  days. On the other hand, short periods (and correspondingly 
small space scales)  day do not cause enough strong detector reaction. It holds significance also 
choice of an index of geomagnetic activity. The -index due to procedure of its calculation is most 
representative at T  days. For these reasons the spectral window  was selected for 
analysis. 

27T 
1T 

2
Dst

20 2d T  d
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However in that window nonlocal interference from the synoptic activity is just possible. Therefore it 
is a need to select for analysis enough long time segment with quiet weather condition. That is why in the 
all previous studies we succeeded in estimation of   only in one case [17]. It was estimation by elec-
trode detector and setup’s quantum magnetometer data: . The last reference also indicates 
the desirability to estimate 

21 22 10 m  
  by data of different detectors, because every of them may be noised in 

different manner. 
Close examination of more recent data has shown that the most appropriate data segment turns out se-

ries 07/14/2003-10/27/2003. Amplitude spectra of I  and  are rather similar (Figure 6.21): many of 
individual peaks coincide (at periods 450, 371, 321, 135, 92.2, 79.9, 72.9, 61.8, 59.4, 55.8 and 49.5 hours). 
Peak-to-peak variation coefficient (ratio of the standard deviation to the mean) for I/Dst2 equals 0.12, 
while for I/Dst it equals 0.31, that confirms approximate validity of equation type of Equation (6.12). 

Dst

For   estimation we combine Equation (4.4) in plane wave approximation, (5.12) and (6.11). In this 
approximation the source is characterized by two parameters: thickness of dynamo-layer h and tempera-
ture sT , for which we take the well known  and . Then for realization 61.3 10 mh   31.3 10 KsT   I  
we obtain the average estimation . 20 2m5 10  

The realization of U synchronous to I  proved to be noisier, that probably shifted the estimation up. 
But using Equation (5.8) instead of (5.12) we obtained in the same spectral window close average esti-
mation . 20 28 10 m  

The realization segment of  synchronous to d I  was shorter, might be because of that, using Equa-
tion (5.13) instead of (5.12) we obtained in the same spectral window bigger average estimation 

. 19 26 10 m  
In view of the fact that accepted model of the complex source of the variable geomagnetic field is ex-

tremely approximated and separation of the useful signal from interference is poor, coincidence of above 
estimations with theoretical one (about 10–20 m2 by 4 2 4eem    in Equation (4.4)) may be thought as  
 

 

Figure 6.21. Amplitude spectra of the detector signal  and geomagnetic activity . I Dst
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satisfactory. Thus transaction cross-section is of order of an atom one. 
 
6.2.5. Relation of the Detector Signals with the Ionospheric Activity 

It was disclosed an interesting manifestation of the ionospheric activity in  variations. It has been 
turned out that probability of the sudden ionospheric disturbances during phase of an increase of  
substantially exceeds this probability during phase of a decrease. Probabilities ratio is 4.5. If only the 
sudden enhancements of the atmospherics were selected such probability ratio became to 7.1. 

U
U

It may be suggested following qualitative interpretation of these facts. The sudden ionospheric distur-
bances are the sharp increase of ionisation of the lower ionosphere. That corresponds to the decrease of 
the entropy resulting, according Equations (4.4) and (5.8), to the increase of the potentials. In the case of 
the sudden enhancements of the atmospheric there is an additional effect related with the thunderstorm 
activity. 

 
6.2.6. Relation of the Detector Signals with the Solar Activity 

The solar activity proved to be the most powerful dissipative process acting on detectors. It is well 
known that solar activity is the cause of the geomagnetic and ionospheric ones; the retardation of the lat-
ter’s ranges from 8 minutes to 2 days. As index of the solar activity we used solar radio wave flux . It 
should be stressed that detectors are insensitive to the solar radio waves; their flux is only index of the 
source entropy production. 

R

In Figure 6.22 an example of the synchronous independence function  on the solar radio wave flux  U
 

 

Figure 6.22. Independence of  on solar radio wave flux U R   and their correlation  as functions of fre-
quency 

|U Ri URr
f  of R . 
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R  (in the standard range 245...15,400 MHz) and their correlation function, computed by daily averaged 
series 12/10/1996-12/11/1997 are shown. Both curves point out the optimal frequency 1415 MHz, corre-
sponding to the radiation from the level of the lower corona-upper chromosphere, where the most inten-
sive dissipative processes take place. At this frequency 0.02

0.000.66U Ri 
  ( 1.23 0.01R U U Ri i    ), 

. In all these series  were taken reduced to 1 A.U. One can expect that use an ob-
servable series  instead of reduced one has to increase correlation slightly. Indeed at the frequency 
2800 MHz for which both the series of  are presented in the “Solar-Geophysical Data”, it turns out 
that for reduced : , while for observable : 

0.68 0.02 
R

URr R

2
R

R 0.59 0.0r   R 0.62 0.02URr   . UR

One can suggest the cosmic ray flux as a possible local mechanism of influence of the solar activity on 
the detector. We have tested it by data of the IZMIRAN neutron monitor, situated near (100 m) our setup. 
Correlation of  with the cosmic ray counting rate turned out much less of above and below mentioned 
correlation  with :  at daily averaging and not significant at monthly averaging. 
Therefore cosmic rays are not carriers of the interaction. 

U
U R 0.30 0.03 

Consideration of all the available time series that the optimal frequency varies from year to year, but 
always remains within the range 610 - 2800 MHz, really corresponding to emission from the upper chro-
mosphere—lower corona level that is just from the level of maximal dissipation the magneto-sound 
waves energy. 

Examples of synchronous amplitude spectra of solar radio wave flux  at three frequencies,  
index and detector signal  are shown in Figures 6.23 and 6.24. All the spectra exhibit two principal 
maxima: at Sun’s rotation period and its second harmonic. The spectrum of  is more complex, since 
the -variation arises due to multifactorial and nonlinear influence of the Sun on the current inducing 
the magnetic field (due to source emf and via plasma conductivity variations). In the realization showed 
in Figure 6.23 the spectrum of  is most closer to the spectrum of 610 in the spectral maxima width 
and the general spectrum shape, including the rise in the region of the longest periods. The ratio of the 
amplitudes of the first and second harmonics of the Sun’s rotation period is 0.95 (for ), 0.69 ( ), 
0.99 ( 610 ), 0.87 ( 1415 ), and 0.69 ( 2800 ). Thus in this parameter  is also closest to 610

R Dst

Dst

U
Dst

Dst

R

U R

U
R R U R . In the re-

alization showed in Fig. 6.24 that ratio is 1.2 for , 0.74 for , and 1.1 for all , that is, the first 
harmonic in  and  is large than the second one and vice versa in . In this case  is most 
similar to 2800  in the principal maxima width and general spectrum shape. At last Figure 6.24 ap-
proximately corresponds to a minimum of 11-year cycle of solar activity, and, accordingly, all the spectra 
in Figure 6.24, including  have less amplitude as compared to Figure 6.23. 

U Dst R
U R Dst U

R

U
Thus spectral analysis points out the certainly closer relation of the detector signal directly with the 

solar activity than with its effect—geomagnetic activity. However optimal frequency of the solar radio 
wave flux, reflecting level of the source-processes in the solar atmosphere, may change in time. 

In Figure 6.25 the correlation function UR  of the detector signal  and solar activity  (by the 
longest  realization 10/26/1994-02/11/1996, at the optimal 

r U
610

R
U f  MHz and with low-pass filtra-

tion  days) is shown. The  series was taken from 1 year before to 1 year latter relatively to 
ends of the  series. Thus Figure 6.25 is computed by data corresponding to Figures 6.18 and 6.23. 
The main maximum in Figure 6.25 

28T R
U

0.51 0.02URr    is observed at advancement 42   days. The 
position of this and also the other two advanced maxima also corresponds to the results of causal analysis 
considered below. Retarded correlation is insignificant. 

But the solar activity excites much more close (to the detector) the process of geomagnetic activity and 
it is legitimately to speculate that latter is direct cause of U variation. Although correlation of  with 
the geomagnetic activity in. Figure 6.18 is bigger than with the solar one in Figure 6.25, it results from 
the optimal band filtration in the former case. At the same low-pass (  days) filtration correlation 
of the detector signal with geomagnetic activity is almost the same: 

U

28T 
max UDstr 0.50 0.02   at the same 

42   days. The same value of   is explained by small response time of  on R (1 - 2 days) as 
compared with low-pass filter parameter 

Dst
28T   days. Correlation of  with  seems practically 

synchronous at given time resolution (
Dst R

0.30 0.02DstRr    at 0  ). 
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Figure 6.23. Amplitude spectra of the solar radio wave flux at frequencies 2800 MHz 2800R , 1415 MHz 1415R  and 
610 MHz 610R , the geomagnetic activity index  and detector signal  in the period range  from 10 days 
to 243 days. Realization 10/26/1994-02/11/1996. 

Dst U T
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Figure 6.24. Amplitude spectra of 2800R , 1415R , 610R ,  and U  in the period range  from 10 days to 274 
days. Realization 03/16/1996-07/23/1997. 

Dst T
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Figure 6.25. Correlation function of the detector signal  and solar activity U R  ( 2T  days). 8
 

Hence we observe probably a direct influence of the solar activity on the detector signal that is typical 
property of nonlocality. For proof consider Bell-type inequality (4.16) for this case: 

 max ,U R U Dst Dst Ri i i ,                             (6.13) 

The fulfillment of In Equation (6.13) is sufficient condition for locality of connection along the causal 
chain  (since any local solar influence on the detector can not come avoiding the magne-
tosphere that is source of D ariations). The experimental values are: 

R Dst U 
st v 0.010

0.0090.807U Ri 
 , 

0.000
0.0020.836

U Dst , i 0.008
0.0002

0.83R Dsti . In Equation (6.13) is violated, therefore connection  is 
nonlocal. 

R U

Availability of signaling in reverse time allowed developing the method of the statistical background 
forecasts (Section 6.2.7). But a natural question is: what about forecasting of the individual events? Our 
experience had shown that detectors responded only to the most powerful of them, such as solar flares of 
X-class. Visible detector signal is very smooth usually. But sometimes, for instance, at the beginning 
2003 several extremely sharp splashes (with duration of order of an hour) and with big magnitude, from 4 
to 134 V were observed in the electrode detector signal on January 1, 9, 14, 15, and February 3, 11, 13, 
14. The biggest splash presented in Figure 6.26 was on February 3. And just 42 days after, the famous 
flare on March 17 happened (Figure 6.27). It was a seldom gigantic flare of X-class. 

In such a manner this powerful solar event caused advanced response of the electrode detector with 
several time shifts and with the main predictor at 42   days. Moreover splash shapes of the 
self-potentials (Figure 6.26) and solar X-rays one (Figure 6.27) are similar. In spite of the greatest mag-
nitude this solar flare was not geoactive, it did not cause of a magnetic storm, because of its inappropriate 
position on the Sun. Therefore this solar event impact on the detector was direct, i.e. nonlocal. 

Return to statistics. The results of causal and correlation analysis of the detector signals and solar ac-
tivity  have shown that in the advanced domain (R 0  ) values of the independence function are  
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Figure 6.26. Unusual splash of the detector signal  on February 3, 2003. U
 

 

Figure 6.27. Gigantic solar flare (X-ray flux) on March 17, 2003, i.e. 42 days after the event recorded by detector, 
which is shown in Figure 6.26. 
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much less and ones of causality function are much more than in the retarded domain ( 0  ), position   
of the main peak of  ,  or  may be from 42d to 280d. Value of maximal, i.e. advanced, i r   
amounts up to 1.58, while  ranges into 0.50 - 0.92 (and relation with  is explicitly nonlinear). Big r R
  interval corresponding to significant 1   is explained by big volume of the solar atmosphere oc-
cupied by the source processes with diffusion propagation. 

Consider in greater detail the results by a annual series 10/19/2002-10/18/2003 when correlation turned 
out particularly big, As solar activity data we took daily solar radio flux  at optimal for the given case 
frequency 1415 MHz and two adjacent ones: 610 and 2800 MHz. Time series was taken for about 3 years 
(beginning 371 days before and finishing 371 days after the ends of  series). As geomagnetic activity 
data we took international hourly Dst-index for the same time as . To suppress the periodic compo-
nents (the synodic solar rotation period in the ,  and U , and the annual period, including its 
second harmonic, in the  and U ) data were wide-band filtered in the period range . 
(For  because of splitting of the spectral line corresponding to the solar rotation period, optimal 
lower bound of the wide-band filtration was more: 32d). 

R

U
R

R Dst
Dst 183 28d dT 

Dst

After this filtration the correlation function  has been calculated in the time shift range  
Correlation time asymmetry is 

URr 371d  
max max 1.18 0.06adv ret

URr r  
130d 

UR  that is quite reliable. Maximal correla-
tion  is at advancement . Figure 6.28 demonstrates a possibility of the solar 
long-term forecast by the shift of corresponding annual segment of  series (at 1415 MHz) forward 
relative to  one by . The forecasting effect is evident quite clearly. The peculiarity of this 
forecasting picture is that  curve is smoother than  one (with the same filtration). Therefore  
responses mainly on long term and, correspondingly, large-scale disturbances of . It should be empha- 

0.92 0.03adv
URr  

U
R

130d 
U R U

R
 

 

Figure 6.28. The detector signal  forecasts the solar radio wave flux U R  with advancement 130 days. Origin of 
time axis corresponds to 01/07/2003. 
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sized that  forecasts namely random component of , which is eluded forecasting by any classical 
methods. 

U R

At the adjacent frequencies the main maximum is also at , but level of correlation is slightly 
less: for 610 MHz  and for 2800 MHz . That is the frequency 1415 
MHz is optimal. 

130d 
0.90adv

UR  0.88 0.04adv
URr   0.03r

The main extremum of correlation UDst  is almost at the same time shift (about 10d more), but it is weaker: 
. Correlation time asymmetry is also weaker: 

r
0.87 0.04adV

UDstr    max max 1.11 0.06adV ret
UDst UDstr r   . On 

the other hand, though the -variation is excited just by solar activity, due to complexity of their rela-
tion, their correlation is rather weak. For given series  and  at 1415 MHz the main extremum 

 is observed at  ( Ds  is retarded relative to ). 

Dst

92 0. 

Dst R
0.38 0.07DstRr     

r
10d  

r
t R

Thus we have , 0. 03UR 0.87 0.04UDst     (both advanced) and  (re-
tarded). Such relationship suggests that connection of  and  is direct, i.e. nonlocal. But all three 
links might be nonlinear. Indeed nonlolinearity of (classical local) –  link is well known, as well 
as –U  (Equation (6.12)) and (as it is demonstrated below) –U . 

0.38 0.07DstRr   
U R

R
R Dst

Dst
But independence functions are equally fit for linear or any nonlinear type of dependence. All three 

independence functions of In Equation (6.13) were calculated with mentioned above time shifts. The re-
sults are: 0.01

0.020.46U Ri 
 , 0.00

0.020.51U Dsti 
 , 0.00

0.020.83Dst Ri 
 . In Equation (6.13) is reliably violated, 

therefore connection  is nonlocal. Even choice of optimal frequency of  1415 MHz is not 
crucial: for 610 MHz 

R U R
0.03
0.010.50 ,U Ri 

  for 2800 MHz 0.02
0.010.49U Ri 
 , In Equation (6.12) is violated, 

though slightly less. 
Turn now to the causal analysis of data, which explicitly demonstrate irreversibility in irreversible time— 

the causal connection in reverse time. In addition is capable to reveal the interesting features of the 
source. Consider it on example of the year corresponding to the onset of a cycle of solar activity 
(12/10/1996-12/11/1997). Since this series covered the minimum of solar activity we selected the less re-
strictive low-pass data filtration: . It is seen in Figures 6.29-6.31 how much strong detector re- 7dT 
 

 

Figure 6.29. Independence and causality functions of the detector signal  and solar radio flux U R  at frequency 
2800 MHz. Realization  12/11/1996-12/10/1997 (realization U 2800R  begins 1 year before and finishes 1 year after 

 one). U
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Figure 6.30. The same as in Figure 6.29 for R  frequency 1415 MHz. 
 

 

Figure 6.31. The same as in Figure 6.29 for R  frequency 610 MHz. 
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sponse to the processes of solar activity. In the advanced domain ( 0  ) values of the independence 
function of the detector signal  on  at the all three frequencies is much lower than in the retarded 
domain, and the causality function is much more than 1. The absolute minimum 

U R
0.47U Ri   and the ab-

solute maximum 1.58   are observed for  at . 2800

The wide  interval corresponding to significant 
R 42d 

1   is explained by a large volume of the solar 
atmosphere filled with the source-processes during diffusive propagation. The common feature of the 
advanced correlation of the detector signal advanced connection of the detector signal and the radio 
emission is existence of three   peaks (see Figure 6.29-6.31). For the frequency of 2800 MHz these 
peaks correspond to advancement: 42, 119 and 280 days; for 1415 MHz: 63, 133 and 280 days; for 610 
MHz: 98, 217 and 280 days. The third peak,  = 280d is common for all three levels of radio emission 
generation, hence corresponds to a process of the greatest spatial scale. 

A comparison the results of causal and correlation analysis have shown the nonlinear . The 
primary maxima of correlation function coincide with the minima of 

 U R

U Ri  (maxima of  ); however they 
differ in height. At the frequency of 2800 MHz the correlation  maximum is observed, corresponding 
to the highest 

r
  peak:  at 0.50 0.03r   42   days (the correlation is significant with reliability no 

less than 0.999 [24]); the highest maximum corresponds to the third   peak:  at 0.72 0.02 r
280   days. 

If the data reduced1 AU published in “Solar-Geophysical Data” are taken instead of observed radio 
emission data, the dependence of U  on  slightly decrease. So for the frequency 2800 MHz at R

42  days the   and  peaks decrease by factor 1.03 and 1.11, respectively (r U Ri  increases at the 
significance limit: by factor 1.01). Thus, the weak effect of the Earth orbit ellipicity also manifests itself 
in the detector response. 

Figures 6.29-6.31 show that the first and second   peaks shift towards longer   as the frequency 
decreases (source level rises). Further, one can see that large values of   shift towards large   as the 
frequency decreases, with a small decrease in the extreme deviations of   and : |U Ri 1.58  , 

0.47U Ri   ( 42   days) for ; 2800R 1.56  , 0.48U Ri   ( 63   days) for 1415 ; R 1.56  , 
0.49U Ri   ( 280   days) for 610 . These features show that processes at overlying levels are acti-

vated latter than at underlying ones (the solar activity diffuses upwards). Thus notwithstanding the un-
usual method of solar activity measurement (by the advance response of an isolated laboratory probing 
process), the result appears to be quite evident. 

R

 
6.2.7. Application of Reversibility in Irreversible Time—Forecasting of the Random   

Large­Scale Processes 
Availability of the advanced correlation allowed demonstrating the possibility of the forecast of ran-

dom component of the solar and geomagnetic activity by the detector signal by means of shift of the re-
alizations. But for the real forecast in such a simplest approach fails, since, first, the processes are far 
from  -correlated ones, therefore big errors are unavoidable and, second, position of the main correla-
tion maximum is instable because of non-stationarity of the processes and one can use it only for a poste-
riori demonstration. 

To solve the real forecast problem we have elaborated a method based on the convolution of impulse 
transfer characteristic with multitude of the preceding detector signal values. On the “training” interval 
 1 2,t t  we compute the impulse transfer characteristic  g  , which relates the detector signal X  and 
the forecasted parameter , by solving the following equation: Y

     
1

d
nt

t

Y t g X t    .                                (6.14) 

The solution of Equation (6.14) in the discrete form is reduced to the system of linear equations 
. The components of  Y XK K  vector are equivalent to coefficients of plural cross-regression (for 

the case of eigendistribution). The number of equations  equals to the advancement of the forecast. n
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X  is the square matrix , the rows are formed from values of the detector signal on the training in-
terval. The first row consists of the values with time index from 1 to , the second—from 2 to 

n n
n 1n  , 

etc. The sequential values of the  are corresponding to the each row of matrix. The system is solved 
with the Gauss method. The stability of the results is achieved by an optimal regularization. Practically 
the advancement is chosen to be equal to the expected average position of the maximum correlation. The 
total training interval for Y ends by the last observed value, while for 

Y

X —preceding on . t
The transfer characteristic computed in such a way is then used for the calculation of the only value of 

the forecasted parameter Y with the advancement Δt. For this purpose the direct problem (6.14) is solved 
by X  interval ended by the last observed value. On the next step (day) the training interval moved for-
ward and the next value  is forecasted. Such procedure allows minimizing influence of non-stationar-
ity. To suppress the residual instability the received sequence goes through an optimal low-pass postfil-
tration. 

Y

Dst

This method is more preferential then those often employed in the analogous situation (of uncertainty 
of the cross-correlation function maximum) the plural regression method on correlation matrix calcula-
tion, since the suggested one does not require any additional hypothesis about the probability distribution. 
It is essential, for the reason that distribution very seldom is the eigendistribution. But the latter is needed 
for uniqueness of the regression problem traditional solution. In addition the distribution is not nearly al-
ways Gaussian, what is needed for correspondence of this solution to the maximal likelihood criterion. 

Note that Equation (6.14) is rather universal and convenient for solving of the anticipatory problem in 
question, but it could apply to an ordinary deterministic forecast. But physically there is difference of 
principle in directionality of causal connection: in our method , while in any customary ones 

. Namely time reversal allows forecasting the random processes. 
Y X

Y  X
The described algorithm has been tested on data previously collected in our experiments, but we have 

done it, simulating the forecast in real time. We have employed all obtained detector signal hourly time 
series of sufficient length – not less than one year for the solar radio flux  and two years for the geo-
magnetic activity  (because of shortcoming of the series length, especially valuable with wide-band 
prefiltration necessary for ). Only the data of the electrode detector  (which proved to be the 
most technically reliable) have satisfied this requirement. 

R

U
Dst

Results of day by day forecasting were compared with factual evolution of  or . Quality of the 
forecast was assessed by standard deviation of the forecasting and factual curves 

R Dst
  (absolute error in 

corresponding units, i.e. 10–22 Wm−2·Hz−1 for R and nT for Dst). Certainly, both the curves were taken af-
ter the same prefiltration. 

According to the algorithm, every point of forecasted curves presented below is the result of a compu-
tation by selected observed data, the minimal volume of which is determined by the forecast advance-
ment (determining duration of the training interval) and by the filter parameters. It should be stressed that 
we have restricted ourselves to the forecasts of only the long-period random component that is the back-
ground forecasts, although the macroscopic correlation effect in itself admits the forecast of individual 
powerful events. 

In Figure 6.32 the solar forecast (  at 610 MHz) by the longest available time series is shown. Pre-
filtration in this case was  days, postfiltration –

R
28T  14T    days. Thus data are taken by the same 

data and with the same prefiltration as for Figure 6.25. Resulting advancement  days, error 35t 
0.88  , while without postfiltration 42t   days, 1.16  . In this case there is a clear utility of 

postfiltration. 
In Figure 6.33 the geomagnetic forecast ( -index) by the same detector data (that is by the longest 

experimentally obtained time series) and with the same postfiltration as for Figure 6.32 (but with another 
prefiltration  days to suppress the specific deterministic component of geomagnetic activ-
ity) is shown. Thus data are taken by the same data and with the same prefiltration as for Figure 6.18. 
Resulting advancement of the forecast 

Dst

35t

28 36T  4

42t   days, error 1.7  . Without postfiltration    
days, but 2.4  . 
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t, d 

 

Figure 6.32. The forecast of solar activity with advancement 35 days (fine line) compared to the factual curve (thick 
line). The origin of time count (days) corresponds to 3/20/1995.  
 

 

t, d 

 

Figure 6.33. The forecast of geomagnetic activity with advancement 35 days (fine line) compared to the factual 
curve (thick line). The origin of time count (days) corresponds to 9/19/1995. 

 
In Figure 6.34 the solar forecast (  at 2800 MHz) with the same data and with the same prefiltration 

(  days) as for Figure 6.29 is shown. This is time (1997) of beginning of the next in turn solar cycle.  
R

7T 
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t, d 

 

Figure 6.34. The forecast of solar activity with advancement 39 days (fine line) compared to the factual curve (thick 
line). The origin of time count (days) corresponds to 3/21/1997. 
 
As it is well known, 11 years is only a mean value of the cycle period, the moment of a cycle beginning 
(i.e. the increase after a minimum) is a random event. It is interesting to test the capability of the method 
around this time. Namely for this reason prefiltration for this case is only  days. The forecasting 
curve was postfiltered also with  days. Resulting advancement 

7T 
397T   t   days and error 5.2   

are only slightly less than without postfiltration: 42t   days, 5.4  . It can be seen that the cycle 
beginning (the sharp increase of  at 125d) is well predicted. R

In Figure 6.35 the solar forecast (R at 1415 MHz) by data of the more recent (2001-2003) experiment 
provided the most advancement is shown. Prefiltration was 28 183T   days, postfiltration – 14T    
days. Resulting  days, 123t  2.0  . Without postfiltration 130t   days, 2.4  . 

In Figure 6.36 the geomagnetic forecast ( -index) by the same data and with the same pre- and 
postfiltration as for Figure 6.35 is shown. Resulting 

Dst
123t   days, 2.9  , while without postfiltra-

tion  days, 130t  3.5  . 
As is seen from Figures 6.32-6.36 the forecast quality is wholly satisfactory, the error  is small as 

compared with corresponding typical values of  or . R Dst
A few examples, of course, do not allow a certain concluding about statistical dependence of the error 

  on the advancement . But it is clear that some minimum t  t   must exist, corresponding to a 
mean position of maximum , i.e. an optimal advancement must be for such a forecast.  t 

It is well known that geomagnetic activity is a direct effect of solar one. The retardation of geomag-
netic activity relative to solar one equals about 1 day (maximum 2 days) that is insignificant in our time 
scale. Therefore the advancement of correlation of the both processes with the detector signal is practi-
cally equal. Hence the optimal advancement for the solar and geomagnetic forecasts by the same time se-
ries of the detector signal turns out the same (the pairs shown in Figures 6.32 and 6.33, and in Figures 
6.35 and 6.36). 

It is well known also that, in spite of the clear causal connection, the correlation coefficient of solar  
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t, d 

 

Figure 6.35. The forecast of solar activity with advancement 123 days (fine line) compared to the factual curve 
(thick line). The origin of time count corresponds to 2/20/2003. 
 
 

t, d 

 

Figure 6.36. The forecast of geomagnetic activity with advancement 123 days (fine line) compared to the factual 
curve (thick line). The origin of time count corresponds to 2/20/2003. 
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and geomagnetic activities is rather small (of order—0.3 in terms of  and ). Under this condition, 
an equal success of the solar and geomagnetic forecasts (their accuracy is acceptable for all the practical 
purposes) means that the detector signal contains direct information about the both activities. Probably it 
is a consequence of bipartite nature of the macroscopic entanglement of three biseparable states. 

R Dst

Thus employment of nonlocal correlation allows realizing the background long-term forecast of solar 
and geomagnetic activity with acceptable for all the practical purposes accuracy. Probably this idea may 
be also implemented for the forecasts of the dissipative processes with big random component in other 
geospheres, e.g. for the seismic activity. 
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Conclusion and Discussion 
 

In this small book we started from Kozyrev idea on fundamental time irreversibility and its classical 
application and finished with surprising manifestation of reversibility in this irreversible time—the possi-
bility of observation of the random future as an existing reality. The key to these questions lies with 
quantum causality. 

The causality is one of the universal physical principles. It plays the twofold role. On the one hand, in 
the problems brought to the enough theoretical level, this principle allows selecting of the physically re-
alizable solutions among a plethora of the mathematically admissible ones. It is just the case of relativity 
theory. On the other hand, the establishment of causal-effect connections in analysis of the complicated 
systems is the first step to the construction of a phenomena model. 

In references to the causality principle, usually it does not bear in mind anything except retardation of 
the effect relative to the cause. With indefinite terms the “cause” and “effect” in the theoretical problems 
it may lead to the confusions. In the complicated phenomena investigation the rather serious mistakes are 
possible. It is particularly important for the quantum entangled states. Usually the question about possible 
reversal of time ordering at quantum correlation through a spacelike interval is avoided presupposing 
quantum correlation to be causeless. But it is in conflict with the possibility of quantum information 
transfer. Although practically the conflict is damped by the fact that for the communication purposes one 
should use an ancillary classical subluminal channel, recently the problem became relevant in connection 
with macroscopic entanglement, quantum wormholes, etc. 

The necessity of formal taking into account of really existing causal connections was felt by many re-
searchers. Moreover Kozyrev’s deeper insight into causality problem had been led him to the interesting 
theoretical and experimental consequences, partly developed by us in Chapter 1. In answer to this chal-
lenge the formal method of classical causal analysis described in Chapter 2 was suggested. This method 
had been successfully applied before to the various theoretical and experimental problems of classical 
electrodynamics, magnetohydrodynamics and geophysics. Recently it is also applied to the experiments 
on macroscopic entanglement. But the classical approach to that quantum phenomenon is rather limited. 

Having developed and tested the quantum causal analysis in Chapter 3, we discovered, in particular, 
that there are the entangled states with both positive independence functions. For such states the classical 
measure of causality   is valid. It gave a support of correctness of the   use in our experimental study 
of macroscopic entanglement (in addition to the fact of the use of measuring device classical output). 
Nevertheless in these experiments we deal with quantum causality. In Chapter 3 it has easily been proven 
that quantum causality, unlike the classical one, can exist only in the open systems. Another interesting 
property of the mixed entangled states is that they obey the weak causality, for which reverse time is al-
lowed. It is the most important point for understanding of the observed anticipatory effects (advanced 
correlations). 

Of course, our theoretical approach to macroscopic entanglement developed in Chapter 4 is essentially 
heuristic. There is an obvious theoretical gap between Chapters 3 and 4 in spite of the discussed argu-
ments for the basic equation (4.4), including formal ones expressed by Equations (4.1)-(4.3) and Equa-
tions (4.5)-(4.8). The strongest argument for validity of Equation (4.4) is: it describes factual Kozyrev’s 
results (at least qualitatively) as well as our results (quantitatively!). But since it has not been derived 
from the first principles, I am far from considering of Equation (4.4) to be more than a heuristic equation 
and it may turn out a naive approximation of reality. Therefore development of a consistent theory at the 
crossing point of quantum information, action-a-distance electrodynamics and causal mechanics is burn-
ing. 

The experiments were performed with three types of detectors. In their construction the main attention 
was paid to exclusion of all possible local impacts (temperature, and the like). The design of the experi-
mental setups and their parameters (Chapter 4) are described in detail enough for reproducing by other 
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researchers. Technically the most reliable turned out the electrode detectors; that is why most of results 
presented in Chapter 6 were obtained by their data. 

The experiments with controlled (deterministic) lab source-processes (phase transition, etc.) demon-
strated, of course, only retarded correlations. 

The main effort was directed to detection of correlations with the spontaneous (random) source- proc-
esses in the environment: the meteorological, ionospheric, geomagnetic and solar activity in the 
long-term experiments in 1993-2003. The main results are: 

1) Signals of all 5 detectors of 3 types spaced up to 40 km turned out synchronously correlated and this 
correlation can not be explained by a local impact of any common factors. Level of correlation achieves 
0.7 - 0.8 and it is independent of type of detectors and their separation within 40 km. 

2) Magnitudes of the detector signals are satisfactory corresponded to predictions of Equation (4.4). 
Thus Equation (4.4) has been verified quantitatively. 

3) The most prominent fact is reliable detection of the advanced response of the probe-processes to the 
all above source ones. Both inequalities (4.11) and (4.16) are violated. For relatively small space scales 
advancement and retardation times are symmetrical and in such cases the synchronous response is added. 
For relatively large space scales retardation time is more than advanced one. Maxima of the correlation 
functions of the detector signals and the indices of source-activity are observed at advancement of order 
10 hours - 100 days and its magnitude is as much as 0.50 - 0.95. Both the advancement and correlation 
magnitudes increase with the source spatial scale. Advanced correlation always more than retarded, their 
ratio is 1.1 - 2.6. 

The advanced/retarded correlation asymmetry is a consequence of absorption asymmetry. The latter 
was theoretically predicted (at the qualitative level) by Hoyle and Narlikar [65]. In Chapter 6 I have cast 
doubt only on their cosmological interpretation of this theoretical statement. Our experiments have con-
firmed the predicted advanced/retarded asymmetry. But doubt about its cosmological nature became 
stronger. 

Indeed perfect absorption of the retarded direct particle field and imperfect absorption of the advanced 
one is decisive statement for Steady-state and Quasi-steady-state cosmology. The question to an experi-
ment is that to verify whether advanced/retarded efficiencies ratio observed in nonlocal transaction is in-
dependent of the matter screening properties? If yes, it is strong evidence for Steady-state and 
Quasi-steady-state cosmology. If no, it is evidence of T-noninvariantness in more broad sense. Our ex-
perimental results point to the latter answer. The advanced/retarded ratio proved to be variable. The scat-
ter of the ratio from 1.1 to 2.6 is too large to accept the former answer. However since the ratio tends to 
increase as the space scale increase, may be at scales larger than solar one the ratio becomes asymptoti-
cally constant. Then the cosmological hypothesis has a chance. It is a question to the future experiments. 

But regardless of the interpretation, the level of advanced correlation proved to be enough for the em-
ployment of macroscopic entanglement for solar and geomagnetic activity forecast. 

All employed at present methods of the forecast of natural processes, in particular solar and geomag-
netic activity operate with its components determined its own evolution and by the external factors (even 
if the statistical approaches are used). However a random (spontaneous) component is rather essential. It 
is associated with that forecasted system is complicated in a synergetic sense, the typical feature of which 
is instability caused by the trajectory divergence in the phase space. In the case of geomagnetic activity it 
is not very important for the short-term geomagnetic forecast, because the external factors, i.e. the solar 
activity and interplanetary medium state are given by the observations yet. Therefore unpredictability 
many of the solar activity manifestations, e.g. the flares, is not of importance. But for the long-term geo-
magnetic forecasts which are explicitly or implicitly based on the solar activity forecast, the random 
component is comparable with the determined one (and exceeds it for the catastrophic events). Thus im-
possibility of taking into account the random component degrades accessible accuracy and advancement 
of the forecast. 

The only phenomenon of macroscopic entanglement gives a basic possibility of the random component 
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forecast. In Chapter 6 the availability of fairly strong advanced correlations with large value of advance-
ment enables us to put and solve the problem of forecasting of random large-scale natural processes on 
the macroscopic nonlocal correlations effect. We have considered this problem as applied to the solar and 
geomagnetic activities. The pragmatic forecasting algorithm on the macroscopic correlations has been 
developed. Its efficiency has been proved on all data of the long-term experiments in regime of the real 
forecast with advancement up to four months. The accuracy of the obtained solar and geomagnetic fore-
casts is acceptable for all the practical purposes. 

It should be stressed that the suggested method is unique namely by the possibility of forecasting of the 
spontaneous (random) component of variations. Repeat, all existing approaches to the forecasting prob-
lem are deterministic (in spite of employment of statistical cross- or auto-regression algorithms), the 
random component is an unavoidable error for them. Indeed a true random process can not be forecasted 
by any classical way. Namely quantum nature of the macroscopic nonlocal correlations effect has al-
lowed forecasting such processes. Therefore the suggested method is essentially complementary to the 
customary ones. 

Thus employment of nonlocal correlation allows realizing the background long-term forecast of solar 
and geomagnetic activity with acceptable for all the practical purposes accuracy. Probably this idea may 
be also implemented for the forecasts of the dissipative processes with big random component in other 
geospheres, e.g. for the seismic activity. 

In summary it may be said that I have presented a theoretical and an experimental approach to the an-
ticipatory effect of nonlocal correlations. The former is rather heuristic at macroscopic level, while the 
latter is quite rigorous. It stands to reason that the development of the theory of macroscopic entangle-
ment, especially in the action-at-a-distance electrodynamics spirit, has a fundamental importance. Per-
haps our theoretical approach is too rough. But at the contemporary rigour of level, the experiments have 
confirmed Kozyrev results about surprising manifestation of reversibility in irreversible time—the possi-
bility of observation of the future random states (undetermined by the previous evolution). 

I would be happy if this book inspires the readers on development of a consistent theory as well as on 
performance of the wider experiments. 
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