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The quantum extension of causal analysis has shown a rich picture of the subsystem causal connections, where the usual 
intuitive approach is hampered more commonly. The direction of causal connection is determined by the direction of 
irreversible information flow, and the measure of this connection, called the course of time 2c , is determined as the 

velocity of such flow. The absence of causality corresponds to 2| |c  , accordingly the degree of causal connection is 

inversely related to 2c . This formal definition of causality is valid at any time direction. The possibilities of causal 

analysis have been demonstrated before by series of examples of the two- and three-qubit states. In this paper we consider 
the new applications. The first one is the application of quantum causal analysis to the asymmetric entangled state under 
decoherence. Three models of decoherence: dissipation, depolarization and dephasing are studied. For the all models the 
strength and the direction of induced causality has been computed. It turns out that the decoherence acting along original 

causality destroys entanglement to a lesser degree than it acting against this causality. The second application is the 
interaction between a two-level atom and infinite-dimensional quantized mode of a field by Jaynes-Cummings model. An 
analytical solution of von Neumann equation for different initial states is examined. The filed is considered initially to be 
in thermal mixed state, while atom – sequentially in excited, ground or thermal states. Negativity, mutual information and 
causal characteristics for different temperatures are computed. It is obtained that for high temperatures distinction 
between behaviors of different initial states smoothes over and the state turns out to be causal, entangled and “classical” 
in entropic sense. And the third application is the teleportation (three-particle protocol). Contrintuitively the teleported 
qubit is not an effect of the original one; it proves the common effect of both two other ones. But at the same time the 
result of Bell measurement constitutes a cause with respect to every qubits of entangled pair just since moment of their 
birth. The latter is manifestation of causality in reverse time. 

 

1. Introduction 

The causality is one of the universal physical 
principles. It plays the twofold role. On the one hand, 
in the problems brought to the sufficient theoretical 
level, this principle allows selecting of the physically 
realizable solutions among a plethora of the 
mathematically admissible ones. It is just the case of 
relativity theory. On the other hand, the establishment 
of causal-effect connections in analysis of the 
complicated systems is the first step to the 
construction of a phenomena model. In references to 
the causality principle, usually it does not bear in mind 
anything except retardation of the effect relative to the 
cause. With indefinite terms the “cause” and “effect” 
in the theoretical problems it may lead to the 
confusions. In the complicated phenomena 
investigation the rather serious mistakes are possible. 
It is particularly important for the quantum entangled 
states. Usually the question about possible reversal of 
time ordering at quantum correlation through a 
spacelike interval is avoided presupposing quantum 
correlation to be causeless. But it is in conflict with 
the possibility of quantum information transfer. 

Although practically the conflict is damped by the fact 
that for the communication purposes one should use 
an ancillary classical subluminal channel, recently the 
problem became relevant in connection with 
macroscopic entanglement, quantum wormholes, etc. 
The necessity of formal taking into account of really 
existing causal connections was felt by many 
researchers ([1] and references therein). In answer to 
this challenge the formal method of classical causal 
analysis was suggested [2]. This method had been 
successfully applied before to the various 
experimental problems of classical physics ([3] and 
references therein). Recently it is also applied to the 
experiments on macroscopic entanglement [4-8]. But 
the classical approach to that quantum phenomenon is 
rather limited. The quantum extension of causal 
analysis has shown a richer picture of the subsystem 
causal connections, where the usual intuitive approach 
is hampered more commonly [9]. The direction of 
causal connection is determined by the sign of 
irreversible information flow, and the measure of this 
connection, called the course of time, is determined as 
the velocity of such flow. The absence of causality 
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corresponds to infinite course of time; accordingly the 
degree of causal connection is inversely related to its 
value. This formal definition of causality is valid at 
any time direction. The independence functions used 
in the causal analysis allow classification of quantum 
and classical correlations of the subsystems. The 
possibilities of causal analysis have been 
demonstrated before by series of examples of the two- 
and three-qubit states [9-13]. 

In this paper we consider the new applications. 
Quantum mechanical development of the causality 
concept turns out not only possible, but fruitful in 
many respects, in particular, in solving of problem of 
entanglement protection under decoherence. Next, the 
quantum mechanical principle of weak causality 
(suggested intuitively long ago by Cramer [14] and 
formalized now in causal analysis) admits availability 
of the signals in reverse time for the random 
processes. It helps to understand the teleportation 
process and opens way to understanding more 
complicated phenomena. 

In Sec. 2 the kernel of quantum causal analysis 
formalism is reviewed. In Sec. 3 application of causal 
analysis to the entangled states under different kinds 
of decoherence is demonstrated. Sec. 4 is dedicated to 
the analysis of entanglement and causality in 
interaction of a two-level atom with the field. In Sec. 5 
we consider three-particle teleportation protocol at 
different approaches and reveal causality in reverse 
time. The general results are summarized in Sec. 6. 

2. Kernel of Quantum Causal Analysis 

Quantum causal is an extension of classical causal 
analysis [2] which operates only with classical 
variables. The essence of causal analysis bases on 
formalization of usual intuitive “cause” and “effect” 
concepts from information-wise asymmetry of a 
process without invoking time relations. The 
retardation of effect relative to the cause is introduced 
after their definition as an axiom. 

Consider a quantum bipartite state, which 
characterized by density matrix AB , which consists 
of two subsystems A  and B  with the reduced density 
matrices A B ABTr   and B A ABTr   respectively. 
From these matrixes we can calculate corresponding 
von Neumann entropies ( )S A , ( )S B  and ( )S AB  by 
general formula: 

 2( ) [ log ]X XS X Tr    .  (1) 

Mathematical formalization of causal analysis is 
founded on a pair of independence functions: 

 | |

( | ) ( | )
,  ,  [ 1,1],

( ) ( )B A A B

S B A S A B
i i i

S B S A
      (2) 

where ( | ) ( ) ( )S B A S AB S A   and 
( | ) ( ) ( )S A B S AB S B   are conditional entropies. 

To understand the idea of independence functions let 
us consider the main demonstrative cases. | 1B Ai    
(which can be realized only when | 1A Bi   ) means 
that we have pure entangled state: ( ) 0S AB  , 

( ) ( ) 0S A S B  , that corresponds to maximal 
quantum correlations between the two subsystems. If 

| 0B Ai   then ( ) ( )S AB S A  and we obtain that state 
B  is one-valued function of state A  (notice, that 

| 0B Ai   does not mean that | 0A Bi  ). Therefore in this 
context we have maximal classical correlations. And 
in case of | 1B Ai  , the B  is independent of the A . It 
is worth to mention, that generally | |B A A Bi i , so the 
independence functions characterize one-way 
correlations between two subsystems in contrast to 
e.g. mutual information: 

 ( ) ( ) ( )I S A S B S AB   , (3) 

this characterizes total two-way correlation between 
the subsystems. 

It is important that for the classical variables 
[0,1]i , that is a result of the classical inequality 

( ) max[ ( ), ( )]S AB S A S B . Therefore independence 
functions can indicate weather the system is 
“quantum”' or “classical” in entropic sense. If at least 
one | 0A Bi   or | 0B Ai  , then a system should be called 
quantum. If both | 0A Bi   and | 0B Ai  , then a system 
should be called classical. The similar definitions, 
although in other terms, were proposed before in Ref. 
[15] (there was considered quantum-classical' bipartite 
state AB , where the A  subsystem was quantum with 

| 0B Ai   and the B  was classical with | 0A Bi  . 
Causality in our consideration corresponds to 

inequality | |B A A Bi i . For the measure of causal 
connection between subsystems A  and B  we use 

2 ( , )c A B , called the course of time (notation follows 
Kozyrev's pioneer work on causal mechanics [1]), and 
derived in [9-11] as the velocity of irreversible 
information flow: 
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 | |
2

| |

(1 )(1 )
( , ) A B B A

A B B A

i i
c A B k

i i

 



, (4) 

where /k r t  , r  is an effective distance 
between A  and B , and t  is a time of 
brachistochrone evolution [16]. For the orthogonal 
states: 

 
max2( )

t
E

 



, (5) 

where max( )E  is a maximal difference between 
eigenvalues of the Hamiltonian. 

The sign of 2 ( , )c A B  is specified by the direction 
of causal connection: 2 ( , ) 0c A B   means that 
subsystem A  is a cause (information-wise source) and 
B  is an effect (informational-wise sink). 2 ( , ) 0c A B   
means that B  is a cause and A  is an effect 
( 2 2( , ) ( , )c A B c B A  . The strength of the causal 
connection corresponds to absolute value 2| ( , ) |c A B : 
the stronger is the causality, the greater is asymmetry, 
the less is 2| ( , ) |c A B . It is noteworthy that e.g. for all 
the pure entangled states 2| ( , ) |c A B   that totally 
conform to representation of quantum correlations as 
causeless and instantaneous. But in the mixed states 
the independence functions need not be equal, 
therefore causality can exist. 

Cramer was the first to distinguish the principles 
of strong and weak causality [14]. The strong causality 
corresponds to usual condition of retardation A B   of 
the effect relative to the cause: 

 2 ( , ) 0 0A Bc A B     ,  

 2 ( , ) 0 0A Bc A B     , (6) 

 2| ( , ) | 0A Bc A B     ,  

Without the axiom (6) we have weak causality, which 
corresponds only to nonlocal correlations. Even as 
they occur in reverse time they only relate the 
unknown states (hence the “telegraph to the past”' is 
impossible). Although it is not very important for the 
present work scope, note that weak causality admits 
the extraction of information from the future without 
well known classical paradoxes. The experimental 
possibility of detection of such time reversal 
phenomena was theoretically predicted by Elitzur and 
Dolev [17] and really proved for the intramolecular 
teleportation [18] and for the macroscopic 

entanglement, [4-8]. And note that we do not use the 
axiom (6) anywhere in the current paper. 

To keep the examples described bellow from 
becoming too involved; we shall restrict ourselves by 
calculations of 2c  with accuracy to 1k  in Eq. (4), 
since it does not qualitatively influence on the 2c  
behavior [9,10]. 

3. Decoherence Asymmetry and Causality 

3.1. Models 

We consider the models of some well known three-
qubit entangled symmetric states – GHZ and W ones 
where causality originally is absent and emerges only 
as a result of decoherence, and asymmetric CKW one 
with finite original causality [9, 10]. The measure of 
quantum causality 2c  is compared to the negativity N  
as a standard measure of entanglement. 

So, the model states are: 
1. Greenberg- Horn-Zeilinger (GHZ) state: 

  1
000 111 ,

2
GHZ    (7) 

2. W-state: 

  1
001 010 100 ,

3
W     (8) 

3. Coffman-Kundu-Wooters (CKW) state [19, 20]: 

  1 1
100 001 010

22
CKW    . (9) 

The first qubit of every state we call the 
subsystem A , the second and third ones – the 
subsystems B and C . Any two-party partitions of (7) 
and (8) are equivalent. In the state (9) the party A  sets 
off from B  and C , therefore only parties B , C  and 
AB , AC  are equivalent. Since all the states (7)-(9) are 

pure any their two-one partitions AB C , A BC , 
etc. are causeless 2(| | )c   [9, 10]. 

Finite causality potentially is possible only in the 
mixed subsystems A B , A C  and B C . But due 
to the symmetry there is a finite causality only in the 
state (9); namely the computations of Ref. [9, 10] has 
yielded for the state (9): 2 2( , ) ( , ) 5.30c A B c A C  . 
Thus A  is the cause with respect to B  and C . 

The three kinds of decoherence (of 0 1p   
degree) reduce to the following transformations [21, 
22]: 
Dissipation: 
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0 0 0 0 ,

1 1 (1 ) 1 1 0 0 ,

1 0 1 1 0 ,

0 1 1 0 1 .

p p

p

p



  

 

 

 (10) 

Depolarization: 

 

0 0 (1 ) 0 0 ,
2

1 1 (1 ) 1 1 ,
2

1 0 (1 ) 1 0 ,

0 1 (1 ) 0 1 .

I
p p

I
p p

p

p

  

  

 

 

 (11) 

Dephasing: 

 
1 0 (1 ) 1 0 ,

0 1 (1 ) 0 1 .

p

p

 

 
, (12) 

We apply (10)-(12) to one of the qubits of (7)-(9). 
Due to the symmetry of these states it is enough to 
apply a transformation to any of qubits of (7) and (8) 
and we select this qubit to be C . For the state (9) the 
distinguishable results are achieved by application of a 
transformation only to the qubits C  and A  (the 
transformations of B  and C  are equivalent). 

The resulting mixed states are the following: 
Decoherence of GHZ (7): 

 

 

 

 

000 000 1 111 111
1

110 110 ,
2

1 000 111 111 000

dissC
GHZ

p

p

p



  
 

  
 
    

 (13) 

 

 

 
000 000 000 1111

1
2 2 111 000 111 111

001 001 110 110 ,
2

depolC
GHZ

p

p


            

  

 (14) 

 
  

 
000 000 111 1111

2 1 000 111 111 000
dephC
GHZ

p


 
  

    
 (15) 

 
Decoherence of W (8): 

 

010 010 010 100

100 010 100 100
1

(1 ) 001 001 000 000 ,
3

001 010 001 100
1

010 001 100 001

dissC
W

p p

p



 
 
  
     
  
         

(16) 

  

001 010 001 1001
(1 )

3 010 001 100 001

1 001 001 010 010 100 100
2

000 000 011 011 011 101
,

2 101 011 101 101

depolC
W p

p

p


  

       
     
 

  
      

 (17) 

 

001 001 010 0101

3 010 100 100 010 100 100

001 010 001 100
(1 ) .

010 001 100 001

dephC
W

p




 
  

 
       

(18) 

 
Decoherence of CKW (9): 

  

010 1001 1 1
010 010

2 2 100 0102

1 1
100 100 1 001 001 000 000

2 2

1 1
001 010 001 100

2 2
1 ,

1 1
010 001 100 001

2 2

dissC
CKW

p p

p


  

      

   

   
  
    

(19) 

 

 
 

 

 

 

 

001 0101

1 2 010 001 100 100
1

2 1
001 100 100 001

2

1
001 001 010 010

2
1

12 010 100 100 010
2

1
000 000 011 011

2
,

12 011 101 101 011 101 101
2

depolC
CKW p

p

p



   
                 

       
    

  
     

   
  

(20) 
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 

 

 
 

1
001 001 010 010

2
1 1

010 100 100 010
2 2

100 100

001 010 010 0011
1 ;

2 2 001 100 100 001

dephC
CKW

p



 

  




    
   

 (21) 

  

001 001 001 0101 1

2 2 010 001 010 010

1 100 100 000 000

001 100 010 1001
,

2 100 001 100 010

dissA
CKW

p p

p


  

       
  

 
      

 (22) 

 

001 100 010 1001 1

2 100 001 100 0102

001 001 001 0101

21 010 001 010 010
2

100 100

101 101 101 1101
000 000 ,

2 2 110 101 110 110

depolA
CKW

p

p

p


         
  
                

            

(23) 

 

 

001 001 001 010 010 0011 1

2 2 010 010 2 100 100

001 100 010 1001
1 .

100 001 100 0102

dephA
CKW

p


   

       
 

       

(24) 

 
From Eqs. (13)-(24) we have computed all the 

marginal and conditional entropies, then – the 
independence function i  like (2), and at last – the 
course of time 2c  like (4) for all the distinguishable 
two-party partitions. For the same partitions the 
negativity N , as a measure of entanglement, has been 
computed too. 

3.2 Causal connections at different kinds of 
decoherence 

Decoherence of the most symmetric GHZ state 
produces the most simple causality picture shown in 
Figure 1 (recall that according to our notation 

2 ( , ) 0c X Y   means directionality of causal 

connection X Y , 2 ( , ) 0c X Y   means Y X  ). 
Only dissipation leads to finite causality in any 
partition. If the dissipated qubit constitutes an 
individual party (the partitions AB C  and B C ) 
this party always corresponds to the effect 
(    2 2, 0,  , 0c AB C c A C  ) and with the increase 
of the degree of dissipation p  the causality amplifies 
( 2 0c   at 1p  ). It is in full agreement with the 
intuitive expectation – the irreversible flow of 
information is directed to the dissipated particle. The 
fact that    2 2, ,c AB C c B C  is explained in Ref. 
[11] by stronger mixedness of the reduced state 

( )BC  as compared to ( )ABC , because mixedness 
is a necessary condition of causality. In its turn 
stronger mixedness of ( )BC  is the consequence of 
both interaction with A  and dissipation of C  i.e. 
interaction with the non-controlled environment; while 
mixedness of ( )ABC  is the consequence of only the 
latter. Note that in the case of dissipation of one of the 
particles of two-particle counterpart of GHZ state (that 
is Bell state) all the corresponding entropies and 
therefore all the other parameters, including 2c  [9, 10] 
exactly coincides with those of GHZ AB C  
partition. In the partition AC B  the behavior of 
causality is nontrivial. In contrast to the above case the 
couple AC  including the dissipated particle C  
constitutes the cause. The fact is dissipation of C  
decreases ( )S C  (the states approaches to the certain 
ground state according to Eq (10)). On the other hand 
the dissipation of C  opens the subsystem AC  to the 
environment and ( )S AC  increases and has the 
maximum at 1 2p   equal to 3/2 [11], while 

( ) 1S B const  . The particle B  always corresponds 
to the effect but 2c  is not monotonous: it has the 
minimum at 0.594p  . To explain this fact, note that 
at 0p   the state (13) is pure therefore 

 2 ,c AC B  ; at 1p   the state (11) is maximally 
mixed, but ( ) ( )S AC S B  (the fully dissipated 
particle C  has “disappeared”) therefore 

 2 ,c AC B   too. The denominator of Eq. (4) for 
 2 ,c AC B : | |AC B B ACi i  has the maximum at 

0.401p   [11], while the nominator that is correlation 

| |(1 )(1 )AC B B ACi i   decreases as p  increases, 
therefore 2min c  is shifted to a higher p  relative to 
1/2. But by comparison with other partitions causality 
in the AC B  one is prevailing, as it is seen from 
Figure 1, at small dissipation ( 0.387p  ). 
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FIGURE 1. Causality in GHZ state with decohered qubit C . 

 
Depolarization leads to only finite causality 

AC B  (Figure 1(c)) that is with the same direction 
as in the dissipation case but strength of causality 
amplifies monotonously as p  increases, achieving 

2 1c   at 1p  . 
Dephasing of GHZ state does not lead to 

emergence of any causality. 
W-state decoherence (Figure 2) differs from GHZ 

one in that depolarization leads to finite causality in all 
the three partitions, so does the dephasing in AC B  
partition. Quantitative features of the 2c  behavior 
induced by dissipation are the same as in GHZ state 
and they are explained by the same reasons. The 
distinction is that 2c  in AC B  partition has the 

minimum at 0.576p   and 2c  in this link is higher, 
i.e. causality is weaker, than in the two other partitions 
at any p .At depolarization, in contrast to dissipation, 
if the depolarized qubit constitutes an individual party 
(the partitions AB C  and B C ) this party always is 
the cause (    2 2, 0,  , 0c AB C c B C  ) and with the 
increase of the degree of dissipation p  the causality 
amplifies ( 2 0c   at 1). It is also in agreement with 
the intuitive expectation – the irreversible flow of 
information (noise) encroaches through the 
depolarized party and propagates to another one. The 
fact that    2 2| , | | , |c AB C c B C  is also explained by 
stronger mixedness of the reduced state ( )BC  as 
compared to ( )ABC . 
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FIGURE 2. Causality in W-state with decohered qubit C . 

 

A comparison between Figures. 1(c) and 2(c) 
shows that in both the cases directionality of causal 
connection is AC B  and the curves 2c  are alike. In 
the W-state the dephasing also induces the causality 
very similar to the depolarization case, but weaker. 

The decohered CKW-state, having originally the 
two causal connections A B  and A C , produces 
much more rich induced causality distribution. At the 
beginning consider an original effect C  decoherence 
(Figure 3). 
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FIGURE 3. Causality in CKW state with decohered qubit C . 
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The only pair B C  is originally symmetric and 
therefore one should expect the same behavior of 2c  
as in the W-state. Really Figure 3(a) looks 
qualitatively like Figure 2(a), but we observe stronger 
causality at the depolarization. As we have seen 
before, the depolarization and dissipation, acting on 
one-qubit party, induce the opposite directions of 
causal connection with another party. But in the pair 
A C  (Figure 3(b)) all the three kinds of decoherence 

amplify the original causality A C .The strongest 
causality is observed in the intuitively expected case 
of the dissipation. For the depolarization intuitively 
we could expect reversal or, at least, attenuation of 
original causality, but it turns out amplified, though 
nonmonotonously with 2min c  at 0.427p  . The 
reason is that for CKWC-state ( ) 1 maxS A    and it 
is impossible to reverse causal connection without 
decreasing ( )S A  below this maximum. The 
depolarization of C at relatively small p  opens more 
the subsystem AC  and amplifies the original 
causality. At 1p   ( )S C  increases up to 

( ) 1 maxS C    and causality returns to its original 
level. 

In the case of partition AB C  (Fig. 3(c)) we 
have the same as for W-state (Figure 2(b)) and 
intuitive expected result: the dissipated party C  is the 
effect with respect to AB , whilst the depolarized C  is 
the cause.  

If the decohered qubit C  is included in the two-
qubit party AC  (Figure 3(d)) we observe causality 
AC B at any kind of decoherence. The variation 

from W-state reduces to the stronger and 
monotonously amplifying causality at the dissipation. 
The case of partition A BC  (Figure 3(e)) is close, 
but at depolarization and dephasing BC A , while 
at dissipation A BC . This peculiarity of dissipation 
is clear. Indeed, at full dissipation ( 1p  ) the particle 
C  “disappears” from its two particle party and as a 
result 2 2 2( , ) ( , ) ( , ) 5.30c AC B c A BC c A B   . 

The original cause A  decoherence leads to the 
different causal picture (Figure 4). One may expect 
that as a result of increasing dissipation of A , the 
original causal connection A C  will at the 
beginning attenuate until disappearance at some p , 

after that direction of causality will reverse with 
further utmost amplification of the connection C A  
as p will tend to 1. In Figure 4(a) it is seen that indeed 

2 ( , )c A C  changes its sign at 1 2p  . But the 
variation of positive 2 ( , )c A C  (corresponding to 
directionality of the causal connection A C ) proves 
to be not monotonous; it has the intuitively 
unexpected minimum equal to 5.08 at 0.103p  . 
Next, in the pair A C  (Figure 4(a)) the 
depolarization leads to considerable and monotonous 
amplification of causality as compared to CKWC 
(Figure 3(b)). On the one hand, it is in agreement with 
intuition (the depolarized A  becomes the more 
intensive information source). On the other hand, it 
can easily be shown that ( )S A  and ( )S C  remain 
independent of p , which demonstrates that one 
should not consider the marginal entropic asymmetry 
as a sufficient condition or measure of causality. 

In the partition AB C  (Figure 4(b)) the 
directionality of causal connection is AB C  at any 
kind of decoherence, therewith the 2c  curves for 
depolarization and dephasing are monotonous like 
Figure 3(c), while for dissipation the curve has the 
minimum at 0.603p  . The reason of this curve tends 
to infinity at 1p   is that at full dissipation the 
partition AB C  becomes equivalent to the 
symmetric one B C . It is notable that at dissipation 

2 2min ( , ) min ( , )c AB C c A C . And there is an 
interesting relation, which is valid not only in this 
model [13]: 
     2 2 2min ( , ) 1 | ( , ) | min ( , ) .p c AC B p c A C p c A C     

In contrast to the case when the decohered single-
party was the original effect C  (Figure 3(c)), in the 
case of decoherence of the original cause A  (Figure 
4(c)) only dissipation induces the causal connection, 
therewith A  becomes the effect. The monotonous 
increase of negative 2 ( , )c A BC  simply reflects 
amplification of causality along with increase of 
dissipation of the effect A . At the same time 

2| ( , ) | 0dissc AB C   at 1p   quicker than 

2| ( , ) |dissc A BC . It reflects the influence of the original 
(at 0p  ) causality A C . 
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FIGURE 4. Causality in CKW state with decohered qubit A . 

 
3.3 Relation between entanglement decay and 
causality 

All the considered states in any partition (except 
pairwise one in GHZ state) are entangled. Compare 
decrease of negativity N  with increasing p  presented 
in Figures 5-8 with 2c  variation in corresponding 
Figures 1-4. 

If we compare N  in accordance to whether the 
decohered party is a cause or an effect within a given 
state, we conclude that almost always (except GHZ 
AB C ) N (cause) < N (effect). Further if we 

compare decoherence of the causes (within a given 
state) with different values of 2c , we conclude that 
decoherence in the cases of lesser 2c  (stronger 

causality) leads to the stronger decrease of N . The 
inverse conclusion follows from comparison of 
decoherence of the effect with different values of 2c . 
Apparently we obtain a quite logical conclusion: the 
cause decoherence leads to more dramatic decay of 
entanglement than the effect one and the stronger 
causality the stronger decay. That is causality reveals 
the role of asymmetry in information propagation 
(harmful for entanglement in this context). But in this 
consideration we have to compare the different kinds 
of decoherence. Such a consideration can not 
distinguish the role of causality and decoherence 
manner. 
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FIGURE 5. Negativity of GHZ state with decohered qubit C . 

 

 
 

FIGURE 6. Negativity of W-state with decohered qubit C . 



 

 

12 

12 

 
 

FIGURE 7. Negativity of CKW state with decohered qubit C . 
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FIGURE 8. Negativity of CKW state with decohered qubit A . 

 

Another approach is the comparison of N  and 2c  
at fixed both the state and the kind of decoherence. 
Therefore we should consider the original cause 
decoherence ( )A and effect ( )C in CKW state. 

Begin with the reduced states. Therewith the case 
of dephasing is irrelevant ( dephC dephAN N ). In the 
dissipated CKW state (Figures 7(b) and 8(a)) 

dissC dissAN N . As we already know, dissipation of A  
leads to reversal of original causality (Figure 4(a)); 
dissipation of C amplifies original causality (Figure 
3(b): 2 2| ( , ) | | ( , ) |c A dissC c dissA C . We conclude that 
dissipation, amplifying original causality, destroys 
entanglement to a lower extent than dissipation, acting 
against it. 

In the depolarized CKW state (Figures 7(b) and 
8(a)) depolC depolAN N . And we know that 
depolarization of A  leads to the strong amplification 
of the original causality (Figure 4(a); depolarization of 
C  only slightly varies it (Figure 3(b)): 

2 2| ( , ) | | ( , ) |c A depolC c depolA C . We conclude that 
depolarization, amplifying original causality, destroys 
entanglement to a lower extent than depolarization, 
acting almost indifferently or against it. 

Both the conclusions coincide. Decoherence by 
the dissipation or depolarization acting along original 
causality is better from viewpoint of entanglement 
persistence, than acting against this causality. In other 
words, for entanglement persistence one should not 
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“stroke the system against the grain”. As a 
consequence, having compared the above inequalities 
for N  and 2c , we infer that stronger entanglement 
corresponds to stronger causality. Of cause, this 
inference is not universal, but it shows that less 
information-wise symmetric states can be more 
entangled. 

Now consider decoherence in the partitions where 
a decohered qubit is in the party AC  (or AB ). That is 
the party consists of both the original cause and effect. 
Thus we consider influence of the “internal” causality 
variation on entanglement in the partition AC B  in 
CKW state. The corresponding curves of Figures 7(c) 
and 8(b) evidence at any of three ways of decoherence 
at any fixed p : decohC drcohAN N . The inference is 
nontrivial: the decohered internal effect destroys 
entanglement to a lower extent than the decohered 
internal cause. 

4. Entanglement and Causality in Interaction of 
a Two-level Atom with the Field 

4.1 Interaction model 

We consider a bipartite system which consists of a 
two-level atom, which can be founded in the ground 
state 

a
g  and excited state 

a
e , and quantized mode 

of a field with possible energy states 0
f
, 1

f
, 

2
f
,… For simplification we set detuning frequency 

to zero (resonance case is considered). The interaction 
is described by Jaynes-Cummings model (JCM) with 
the Hamiltonian: 

 † †1
( )

2 z f f f fa
H a a g e g a g a       ,(25) 

where   is the resonance frequency, †
fa  and fa  are 

the creation and annihilation operators respectively, g  
is dipole matrix element which determines Rabi 
frequency. It is helpful to write the Hamiltonian of the 
full system as a sum of two commuting parts: 

0H H V  , where †
0

1

2 z f fH a a     is 
diagonal matrix and †( )f fa

V g e g a g a   is 
matrix with only off diagonal elements and 
corresponds to the interaction between the subsystems. 

The dynamics of the system is described by von 
Neumann equation: 

 
( )

, ( )af
af

t
i H t

t





   

 , (26) 

where ( )af t  is a density matrix of whole system. The 
Hamiltonian (25) is time independent, the solution of 
(26) is: 

 / /( ) (0)iHt iHt
af aft e e    , (27) 

If the initial state is diagonal (later we will see that 
such is the case) then / /(0) (0)iHt iHt

af afe e    , so 
the resulting solution of Eq. (26) takes the form 

 / /( ) (0)iVt iVt
af aft e e    . (28) 

In our consideration we deal only with separable 
initial states: 

 (0) (0) (0)af a f    , (29) 

where (0)a  and (0)f  are the initial states of atom 
and field respectively. 

In the all variants we consider field initially to be 
in the mixed thermal state 

 
1

(0)f i f
i

P i i




  , (30) 

where iP  is the probability distribution. As the field 
satisfies Bose-Einstein statistics, we have 

 
1

1 1

i

i

n
P

n n

 
     

, (31) 

with the mean photon number 

 
/

1

1Bk T
n

e 


, (32) 

where T  is the temperature. As we see n  
characterizes the temperature of the field. 

Next one should examine a computational 
problems caused by infinite dimensionality of (0)a . 
It is evident from Eq. (31) iP  are exponentially 
decaying series so that contribution of the matrix 
elements i f

P i i  at sufficiently high i  vanishes. 
Therefore we can confine series iP  at max 1i N   and 
estimate occurred error as 

   maxmax 1

0
1 1

NN

ii
P n n 


      . (33) 

For our calculations we have set max 400N  , which 
gives 0.007 1%    at the highest 80n  . At 
lower n  calculations are much more accurate. 

For the initial states of an atom (0)a  we 
consider the pure excited and ground states: 
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 (0) (0)e
af fa

e e   , (34) 

 (0) (0)g
af fa

g g   . (35) 

Finally these states give two different solutions of Eq. 
(28), which we will discuss further. 

4.2. Computation results 

With the density matrix ( )af t  we can compute the 
reduced matrices of atom and field: ( ) ( )a f aft Tr t   
and ( ) ( )f a aft Tr t  . From these three matrices we 
can get time dependent von Neumann entropies of the 
whole system ( )S af  and the two subsystems ( )S a  
and ( )S f  by Eq. (1). Then we can compute the 
mutual information (3) and the independence 
functions |a fi  and |f ai  (2), which determine the course 
of time (4). As we shall see further, it turns out 

| |f a a fi i , so in our consideration we use the notation 

2 ( , )c f a  to deal with the positive values. And like 
before, we use the negativity N  as a measure of 
entanglement. 

Let us start the overview of computation results 
from the initial state (34), where the atom is in the 
pure excited state and the field is in the thermal mixed 
state. At 0n   we get the pure oscillating entangled 
state vector sin( ) ,1 cos( ) ,0e

af af af
t g i t e   | 

Because of whole state purity we have | | 1a f a fi i    
and 2 ( , )c f a   . 

In Figure 9(a) the dynamics of negativity for 
0n  , 1n   and 10n   is presented. As we see, 

the range of N  variations decays and negativity 
begins to fluctuate near the average value. Moreover, 
the entanglement is present at 0n   and 0t  in 
total agreement with results of Ref. [23]. 

 

 
 

FIGURE 9. Dynamics of characteristics for the initial state (34) at 1n   (thin lines) and 10n   (bold lines): (a) negativity (dashed line 

corresponds to 0n  ; (b) information; (c) independence functions |f ai  (upper lines) and |a fi  (lower lines); (d) causality. 
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The same behavior shows mutual information I  
in Figure 9(b), which corresponds to total correlations 
between the subsystems. It also decays with 
temperature growth and again it is positive at all times 
except t = 0 (at nonzero temperature). 

More detailed description of correlations 
independence functions present, which are shown in 
Figure 9(c). As we see | |f a a fi i , so our system is 
asymmetric and the field corresponds to the cause 
(information source) and the atom corresponds to the 
effect (informational sink). Also it is very interesting, 
that in contrast to case 1n  , when our system 
demonstrates quantum properties ( |a fi  can be 
negative), at 10n   both independence functions 
remain positive at t  greater than about 1. It means 
that system is classical in entropic sense but still is 
entangled. Causality is presented in Figure 9(d). It is 

particularly remarkable that that for 1n   2 ( , )c f a  
is bounded by unit value. With temperature increase 
the variation and average value of 2 ( , )c f a  decrease, 
so we see amplification of the causal connection. 

It also notable that time of transfer to 
quasistationary state growths with the temperature rise 
(the most demonstrable is Figure 9(c). After this time 
all the characteristics of the system begin to fluctuate 
near some average values. The extent of such 
fluctuations goes down with the temperature increase. 

Next consider the case of initial state (35), where 
an atom is in the ground state, while the field still is in 
the thermal state (Figure 10). At 0n   we have 
stationary separable state vector 

,0g
af af

g const   , which is classically 
uncorrelated too: | | 1a f a fi i  . 

 

 
 

FIGURE 10. Dynamics of characteristics for the initial state (35) at 1n   (thin lines) and 10n   (bold lines): (a) negativity; (b) information; 

(c) independence functions |f ai  (upper lines) and |a fi  (lower lines); (d) causality. 
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As it is seen from Figure 10(a) with a rise of n  
there is an increase of the negativity: the atom in the 
ground state becomes entangled with nonzero energy 
states of the field ( 1 , 2 ,...

f f
). The same behavior 

demonstrates information in Figure 10(b). It might be 
presupposed (as the temperature is held to have a 
destructive influence on correlations) that there is 
some n  after which an entanglement and 
information would decrease. But it is not the case. The 
independence functions in Figure 10(c) show that 
system always is classical in entropic sense. And again 
the independence functions demonstrate asymmetry 
between the subsystems: | |f a a fi i  (the field state still 
is the cause with respect to the atom state. Causality is 
presented in Figure 10 (d). As well as in previous case 
it amplifies with the temperature increase. 

As we have seen, all parameters of the system for 
both considered initial states fluctuate near some 
average values at high temperatures. It seems logically 
to estimate these values as functions of n . We have 
chosen time series 150 400t   with time step 

0.5dt   and have computed the average values 

| | 2, , , ,av av f aav a f avN I i i c  for the set of mean photon 
numbers 1 80n  . min 150t   has been chosen to 
avoid getting in time of transfer to quasistationary 
state it is high enough for our biggest 80n  . Time 
step 0.5dt   has been chosen as it does not 
correspond to any of system eigenfrequencies. Also 
with average values we have stored minimal and 
maximal values of characteristics to see variability at 
our time series. The results of such time averaging are 
presented in Figure 11. 

 
 

FIGURE 11. Time averaged characteristics and corresponding minimal and maximal values as functions of n  for different initial states: squares 

and right vertical lines (34), circles and middle vertical lines (35). Averaged characteristics: (a) negativity; (b) information; (c) independence 
functions |f ai  (empty symbols) and |a fi  (filled symbols); (d) causality. 
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First, let us discuss the general features. As noted 
above the extent of fluctuation for all the parameters 
decreases with the temperature growth. Moreover the 
distance between the curves for different initial states 
decreases: it means that the significance of atom initial 
states for the average characteristics disappears at the 
high temperature. It totally corresponds to the result 
that field is an information source that is a cause. 

The most interesting is Figure 11 (a), which 
demonstrates dependence of negativity on n . It is 
expectable that for initially pure excited state of the 
atom entanglement decreases with the temperature 
rise, but it surprisingly does not vanish. It tends to an 
asymptotic value, as well as the curve for the initially 
ground state. It is intriguing that for the ground initial 
atom state there is an amplification of entanglement 
with growth of the temperature, so in this case the 
temperature creates entanglement. 

All the other characteristics also have such 
asymptotic values, as it is seen in Fig. 11(b)-(d). We 
can estimate that for n >>1 the averaged values are: 

0.07avN   (14% of maximal value), 0.8avI  bit, 

| ( ) 0.90a f avi  , | 0.25f ai  , 2 ( , ) 0.25avc f a  – the field 
state is the cause with respect to the atom state. 

We can summarize the time averaged results 
(Figure 11) as follows. Information, reflecting total 
correlations behaves similarly to the negativity. But 
the independence functions are completely positive 
that is classical. The atom-field state is entangled, but 
correlations are apparently classical. The field state is 
the cause with respect to the atom one under any 
conditions. However relation between the degrees of 
causality and entanglement at the low temperature 
strongly depends on the initial conditions. At the high 
temperature both causality and entanglement are 
indifferent to them. 

5. Teleportation 

Teleportation is well known and amazing quantum 
phenomenon. The most interesting fact is that 
teleportation protocol can be considered as a process 
involving hidden signal transmission in reverse time. 
And it does not turn out a matter of “sophisticated” 
interpretation. The experiment based on postselection 
gave a direct proof of such a time reversal [18]. 
Another experiment demonstrated the possibility of 
teleportation traveling along closed time-like curve 
without the classical paradoxes [24]. At last, recently 

the experiment on entanglement swapping (that is 
teleportation of entanglement) has demonstrated, even 
without postselection, quantum information transfer 
from the future to the past; in fact it has demonstrated 
a possibility of observation of the random future as the 
existing reality [25]. Thus teleportation is just such a 
process where determination of causality irrespective 
to time direction is relevant. 

We consider the standard three-particle (three-
qubit) teleportation protocol (Figure12). 
 

 
 

FIGURE 12. Qubit A  teleports onto qubit B . 

 
The input particle, which state to be teleported by 

Alice, is A ; the EPR source produces two entangled 
particles in the state 

  1
01 10

2BC

   , (36) 

one of which, B  goes to Bob, another one, C  goes to 
Alice, who performs Bell measurement with four 
possible outcomes: 

  1
00 11

2AC

   . (40) 

  1
00 11

2AC

   , (39) 

  1
01 10

2AC

   , (38) 

  1
01 10

2AC

   , (37) 

If her result is (40) the output state B  coincides with 
input A , if not – Bob performs a unitary operation on 
B  to complete the protocol. In any case Bob needs 
information about Alice result, which she sends him 
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through an ancillary classical channel. As we are 
interested in investigation of quantum information 
namely, we exclude this channel. Instead Bob may 
measure his particle B . Note that any measurement 
(by Alice or by Bob) implies dephasing. 

The state of B , accordingly commonly accepted 
interpretation, changes instantaneously at the moment 
of Alice joint AC  measurement. But accordingly time 
reversal formalism developed by Laforest, Baugh and 
Laflamme (LBL) and the corresponding experiments 
[18, 25] the B  “knows” about future AB  
measurement from very beginning. We aim to clear up 
this question with causal analysis. We will do it in the 
framework of usual tensor product treatment and 
LBL-like time reversal treatment. 

5.1. Tensor product treatment 

The peculiarity of our approach is that we consider 
Alice joint AC  measurement as dephasing of degree 
p  accordingly to Eq. (12). One may consider it as a 

soft measurement. More interesting consideration is 
that dephasing is a process from 0p   (measurement 
without record, that is pre-measurement) to 1p   
(measurement is completed). Thus p  is indirect time 
measure of this, certainly very fast process. The 
measurement which Bob may do to get to know 
something about his particle also is dephasing of a 
degree 1p ; we will limit ourselves by the cases 1 0p   
and 1 1p   

So let the original matrix is: 

 0
ABC A BC A BC

           , (41) 

Expand the matrix in Bell measurement basis: 

 0

, , ,
ABC ijkl i j k l BAC

i j k l

F      , (42) 

where , 1,2,3,4i j   correspond to the states (37), 
(38), (39) and (40) respectively; , 1,2k l   correspond 
to 0 , 1

B B
 respectively; and 

0, ,ijkl i k ABC j lF      . 
Alice Bell measurement of AC  means the 

replacement: 

 (1 )ijkl ijklF F p   at i j , (43) 

while Bob measurement of B  means the replacement: 

 1(1 )ijkl ijklF F p   at k l . (44) 

Transforming (42) according to (43) and (44), we 
obtain the resulting full matrix ABC  (which explicit 
expression is very longish) and can do all the 
subsequent computation for causal analysis. 

Consider the results for the simplest different 
variants of the input states A . A common property of 
all the variants described below turns out the fact, that 
in contradiction with classical intuition, there are no 
causal connections between any one-particle parties, 
in particular, A B . It is a simple consequence of 
the no-cloning theorem. Another common property is 
identity of causality in the partitions AC B  and 
AB C . So, below we concentrate on the partition 
AC B . 

1. A  is in the definite state: 0 0A  . Figure 13 
demonstrates qualitative quite expectable result. At 

0p   causality is absent ( 2 ( , )c AC B   ) as the state 
ABC  is pure. At finite p  causality AC B  appears 

that if information goes from Alice to Bob. It is 
natural that at 1 1p   causality is stronger since 
dephased B  is more definite. When Alice completes 
her measurement ( 1p  ), causality is most expressed: 

2 ( , ) 1c AC B   at any 1p  because B  is already 
dephased together with C . 
 

 
 

FIGURE 13. Causality at teleportation of 0 0A   at 1 0p   

(thin line) and 1 1p   (bold line). 

 
2. A  is in the maximally mixed state: 

 1 2 0 0 1 1A   . Figure 14 demonstrates 
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stronger causality than in above case. The original 
ABC  is mixed therefore the course of time is finite at 

0p   already: 2 ( , ) 2c AC B   at 1 0p   and 

2 ( , ) 1c AC B   at 1 1p   . At 1p   causality 
amplifies to the utmost value: 2 ( , ) 0c AC B   (that 
means the random input completely tends to determine 
a certain output, while recovery of input by output 
tends to full impossibility). 
 

 
 

FIGURE 14. Causality at teleportation of  1
0 0 1 1

2A    at 

1 0p   (thin line) and 1 1p   (bold line). 

 

3. A  is in the pure equilibrium state: 

 1 2 0 0 0 1 1 0 1 1A     . Figure 15 
demonstrates that again at 0p   2 ( , )c AB C    as 
the state ABC  is pure. But as 1p   causality is 
different at different 1p : 2 ( , ) 1c AC B   at 1 0p   and 

2 ( , ) 0c AC B   at 1 1p  . The latter is a clear result of 
Bob measurement of output qubit which selects a 
definite state from the superposition. 

 
 

FIGURE 15. Causality at teleportation of 

 1
0 0 0 1 1 0 1 1

2A      at 1 0p   (thin line) and 

1 1p   (bold line). 

 

Although qualitatively these formal results agree 
with intuition (namely Alice ( AC ) send quantum 
information to Bob ( B ), note that any direction of 
time in the established causal link AC B  will do. 
Indeed, we nowhere specified when Bob measures 
(dephases) B  . Bob’s measurement may occur after 
Alice’s measurement as well as before. Causality in 
reverse time is allowed. But “telegraph in the past” is 
impossible since a result of Alice’s measurement is 
random. Instead Bob has the possibility of observation 
of the random future as existing reality. Next, we saw 
that Bob’s measurement can only amplify the degree 
of causality AC B , but not generate it. That is the 
result of Bell measurement constitutes a cause with 
respect to every qubits of entangled pair just since 
moment of their birth (like [25]). There is no a 
contradiction with the above original statement: “the 
EPR source produces two entangled particles in the 
state (36)”. This statement in fact is conditioned on 
absence of the future Bell measurement. Commonly 
accepted realizing of causality as directed only from 
the past to the future impeded to perceive that 
conditionality before. 
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5.2. Time reversal treatment 

We follow LBL time reversal treatment described in 
detail in Ref. [18] with some simplification. The main 
idea is that Bell measurement and EPR source act as 
“time mirrors”. The input qubit (riding on the different 
particles as the carriers) travels to Alice’s Bell 
measurement device, reflects, travels backward in 
time to the EPR source, reflects and goes to Bob. 

Every reflection is correspondent to some 
operator W : 

tr

iW  , were tr  is symbol of time 
reversal, the components , , |a b

i iW b a   in Bell 
basis are: 1W  1 , 2 zW  , 3 xW  , 4 yW i  . 
Qubit travel and transformations are shown in Fig. 16. 
The ?W  means that we do not know results of Bell 
measurement; 4W  corresponds to our convention that 
the source generates the state (36). 

 

 
 

FIGURE 16. Time reversal treatment of teleportation from A  to 
B ; obst  is time of an external observer, qt  is proper time of the 

teleporting  qubit. 

 
It is not difficult to get the whole density matrix. 

But we are unable to implement gradual dephasing 
during Bell measurement. Instead we consider the 
most important practically both the extreme cases: 
measurement with ignoring of Bell measurement 
record (to compare with the case 0p   of tensor 
product treatment) and with taking into account the 
record (to compare with the case 1p   of tensor 
product treatment). 

In the first case: (corresponding to 0p  ): 

 
4

4 4
1

1
, , , ,

4ABC i i i i
i

W W W W W W      


  , (45) 

where    is any input ( A ) state. 
The second case (corresponding to 1p  ) is some 

more complicated, so we have restrict ourselves to the 
case of diagonal input states A  that is ,j j   

0 , 1j  . We introduce to the protocol a new 
object D  which records the Bell measurement at 
Alice site. The state of D  in Bell basis is i  

1, 2,3.4i  . As a result we have:  

 
2 4

4 4
1 1

1
, , , , , ,

8ABCD i i i i i i
j i

j W j W W j j W j W W j  
 

  . 

(46) 

We have computed all the 2c  (under condition 

1 1p  ) with the following results. 
In the first case: (corresponding to 0p  ) for A  

is in the definite state 2 ( , )c AC B   ; for A  is in the 
maximally mixed state 2 ( , ) 1c AC B  ; A  is in the pure 
equilibrium state 2 ( , )c AC B   . Thus we have 
exactly the same result as in tensor product treatment. 

In the second case (corresponding to 1p  ) we 
must take D  instead of AB  ( 2 ( , )c AC B  are the same 
as in above case). For A  is in the definite state 

2 ( , ) 1c D C   that exactly the same as in tensor product 
treatment. If A  is in the maximally mixed state 

2 ( , )c D C  is indefinite (in tensor product treatment, 
having variable p  we could take the limit at 1p  : 

2 ( , ) 0c AC B  ). 
Thus time reversal formalism gives in fact the 

same mathematical results as traditional tensor 
product one. But physically it proves our conclusion 
about causality in reverse time in much more strait 
manner. The random future D  influences via 
backward time traveler С  on the factual result of EPR 
emission. 

With the recorder D  we also can consider a 
partition AD B  (which is equivalent of AD C ). 
As a result for A  in the maximally mixed state we 
have 2 2( , ) ( , ) 1 2c AD B c AD C  . This value is 
minimal among all presented above finite values of 

2c , therefore causal connections AD B  and 
AD С  are the strongest ones. Since Bell 

measurement at Alice site occurred later (by time of 
an observer obst ) than EPR emission took place, this 
result is further proof of causality in reverse time. The 
EPR pair “knows” about the random future – 
interaction with random A  and random D . For A  in 
the definite state 2 2( , ) ( , ) 1c AD B c AD C  . 
Therefore the greater is randomness of the future, the 
stronger is time reversal causality. Obviously in the 
case of deterministic future time reversal causality 
must absent. It is just impossibility of “telegraph to the 
past”. 
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6. Conclusions 

The quantum causal analysis is extension of the 
classical one; therefore it is extension of formalized 
intuitive understanding of causality. Indeed in the 
simple situations our formal results are not surprising, 
e.g. when dissipating particle proved to be an effect. 
But even in these cases our formal approach has an 
advantage over usual informal, intuitive one, because 
it provides the quantitative measure of causal 
connection. However in the Quantum World common 
intuition often fails in rather simple systems, 
consisting of a few particles. Causal analysis quite 
works with any system, although its results may seem 
contrintuitively. Therewith these results turns out 
practically useful, e.g. in explanation of peculiarities 
of entanglement decay under different kind of 
decoherence or in relation between intersystem 
causality and consequences of asymmetric 
decoherence. 

Very simple and general property of quantum 
causality is that it can be finite only in the mixed 
states. In our previous works [9-13] we interpreted this 
fact as quantum causality can be finite only in the 
open systems. But in the model of atom-field 
interaction considered in this paper the system is 
closed, the state mixedness, necessary for causality, 
was created before, at the stage of thermal state 
preparation. Therefore we have to correct 
interpretation as follows: quantum causality can be 
finite only in the systems, which are or were open. 

The most prominent property of quantum 
causality is that it can exist in direct as well as in 
reverse time. Remarkably time reversal causality does 
not imply the naive classical paradoxes. We have 
considered such unusual causality in connection with 
contemporary teleportation experiments [18, 24, 25]. 
But, of course its significance is much wide, e.g. for 
interpretation and development of the forecasting 
experiments based on macroscopic entanglement [7, 
8]. 
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