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Abstract: Both statistical classical mechanics and quantum mechanics are developed and 

well-known theories. They represent a basis of modern physics. Statistical classical 

mechanics allows deriving properties of big bodies investigating movements of the smallest 

atoms and molecules of which these bodies consist, using Newton's classical laws. Quantum 

mechanics defines laws of movement of the smallest particles at small atomic distances 

considering them as probability waves. Laws of quantum mechanics are described by 

Schrödinger equation. Laws of such movement are much more different from laws of 

movement of large bodies, such as planets or stones. The described two theories are known 

and well studied for a long time. Nevertheless, they contain a number of paradoxes. It forces 

many scientists to doubt about internal consistency of these theories. However, the given 

paradoxes can be resolved within the framework of the existing physics, without 

introduction of new laws. To make the paper clear even for the inexperienced reader, we 

enter in this paper some necessary basic concepts of statistical physics and quantum 

mechanics without use of formulas. Necessary exact formulas and explanations to them can 

be found in Appendices. For better understanding of the text, it is supplemented by 

illustrations. Further in the paper the paradoxes underlying thermodynamics and quantum 

mechanics are discussed. The approaches to solution of these paradoxes are suggested. The 

first one relies on the influence of the external observer (environment) which disrupts the 

correlations in the system. The second one is based on the limits of self-knowledge of the 

system for the case when both the external observer and the environment are included in the 

considered system. The concepts of Observable Dynamics, Ideal Dynamics, and 

Unpredictable dynamics are introduced. The phenomenon of complex (living) systems is 

contemplated from the point of view of these Dynamics. 
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 1. Introduction 

 

       At the very beginning of this paper it is necessary to make a number of extremely important 

notes. 

 

1) This paper is not a philosophical paper on physics, unlike some other papers about paradoxes of 

quantum mechanics. We use scientific methods to consider a solution of these paradoxes. We also 

construct the physics excluding these paradoxes and find requirements at which it is possible. 
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Misunderstanding of physics, leading to these paradoxes, gives set of physical, but not philosophical, 

errors. 

 

2) This paper is not an attempt to give some new interpretation of quantum mechanics. All 

interpretations (for example, multi-world interpretation, Copenhagen etc.) just try to give more or less 

evident explanation of quantum mechanics.  These interpretations do not solve any paradoxes and do 

not introduce any new appearance in the physics. The author considers all the existing reasonable 

interpretations being admissible. A paradox solution in this paper is not related to some interpretation, 

and is based on general physics.  

 

3) This paper is not a popular scientific paper and includes new, original ideas. The paper is 

designed to a very wide set of specialists including biologists, physicists (in quantum mechanics, 

statistical physics, thermodynamics, non-linear dynamics) and computer science specialists. Therefore 

we have given the popular review of physics base. Though it can seem trivial for one expert, but, 

nevertheless, will be very useful to another expert.  Besides, there are no formulas, only figures and 

text. All formulas are contained in Appendixs. The author is not a pioneer of such style. Examples are 

books of Penrose [1,2], Hofstadter [3], Mensky [4], Licata [85] . These books are not popular books 

despite their "easy" style. The author hopes that he also will be allowed to use this nice style. 

 

4) This paper is not just a review of papers being already completed (though many references are 

given thereto), it also includes original ideas of the author. 

 

5) The author does not try to find new laws of physics
1
. All reviewing is within framework of 

already existing physics. The motivation to write this paper was the fact (paradox!) that the author has 

not encountered any paper or the physics textbook where the full and clear explanation of these 

paradoxes of physics and its consequences is given. Moreover, in many papers these paradoxes are 

ignored. In other papers the explanation is not full or not correct. In many papers the solution is based 

on just some one interpretation of physics (usually multi-world). Sometimes some new (but not 

necessary!) laws of physics are used for explanation there. 

 

                                                 
1
 Peierls [7], Mensky [4] assume that resolving of quantum mechanics measurement paradox is possible by change of 

quantum physics laws and introduction concept of "consciousness" in physics. Penrose [1, 2], Leggett [8] assume that laws 

of quantum mechanics are broken for large enough macroscopical systems. However, many other physics problems have 

already been successfully solved without introduction of new laws.  Examples are Gibbs paradox [9] or interpretation of 

spin as own rotation moment of Dirac electron wave function [10]. Broken symmetries of the Life or the Universe (such as 

symmetry of time direction or symmetry of right and left) can be explained by help of fundamental weak interaction. Weak 

interaction breaks these symmetries. Full explanation can be found in Elitzur paper [11]. However, in the current paper we 

neglect these small effects and search for some other reasons for asymmetry of time. 
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Figure 1. Paradoxes in Classical and Quantum mechanics 

 

2. Principal paradoxes of classical statistical physics. 

 

2.1 Macroscopic and microscopic parameters of physical systems [5, 6]. 

 

   Let's begin our discussion from statistical physics. We will look at the gas outflow from a jet 

engine nozzle.  

 

 

 

Figure 2. The outflow of gas from a nozzle.  Shown (with magnification) are molecules of gas 

invisible by naked eye. 
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We will see distribution of density and velocity of flowing gas, but for large volumes only. These 

volumes include enormous number of invisible molecules. These easily observable density and 

velocity distribution of flowing gas are defined as macroscopic parameters of the system. They give 

incomplete description of the system. The full set of its parameters is given by velocities and positions 

of all gas molecules. Such parameters are defined as microscopic parameters. Flowing gas is defined 

as an observable system. The system is termed isolated if it does not interact with its environment. The 

system internal energy is the sum of all its molecules energies.  

     Further on (unless the contrary is stated), we will consider isolated systems with the 

defined internal energy and finite volume. 

 

2.2 Phase spaces and phase trajectories. [5, 6] 

 

   Let's introduce the multi-dimensional space. Coordinates and velocities of all molecules of the 

system will define the axes of this space. Then, the system will be figured by a point of this space. The 

position of this point will give the full microscopic description of the system. This space is defined as a 

system phase space. The system state change is featured by the point moving in this space and defined 

as a phase trajectory. 

 

Figure 3. Trajectory in the phase space. The current state of the system described by the point in phase 

space p, q. Time evolution is described by a trajectory beginning in the initial state point p0, q0. (Fig. 

from [17]) 

 

    Let us assume that only macroscopic parameters are known, and microscopic parameters are 

unknown. Then the system can be described in phase space by a continuous set of points corresponding 



                           

 

 

7 

to these macroscopic parameters. It is the phase volume ("cloud") of the system or, otherwise, 

ensemble of Gibbs. All points of this volume have equal probability and correspond to different 

microscopic (but identical macroscopic) parameters. (Look Appendix A) [5, 6] 

 

Figure 4. Ensembles in the phase space. Gibbs ensemble is described by a cloud of points with 

different initial condition. Form of the cloud changes during evolution. (Fig. from [17]) 

 

  For each set of macroscopic parameters (a macroscopic state) it is possible to discover the 

correspondent ensemble of microscopic parameters sets. To make this ensemble finite, we will divide 

the phase space into separate very small meshes. Such method is defined as discretization of the 

continuous space. By such reviewing, the system with finite volume and given internal energy can be 

featured by a very major, but a finite ensemble of states. For each macroscopic state it can be found 

the corresponding major, but a finite ensemble of microscopic states. The majority of systems have 

property that huge part of its possible microscopic states correspond to only one principal macroscopic 

state. It is the equilibrium state. For example, for gas in given volume, it corresponds to uniform 

distribution of molecules in the volume. 

(Look  Appendix E.) [5, 6]. 

 

 

2.3 Ergodicity and intermixing. [12-14] 

 

The majority of real systems possess property of ergodicity [13, 14]: almost any phase trajectory 

should visit eventually all microstates meshes, possible for given energy of a system. The system 

should stay for approximately equal periods of time in each microstate mesh. Ergodic systems possess 

the remarkable property. The average value on time of any macroparameter over a trajectory will be 

identical for all trajectories. It coincides with the average value over the ensemble of systems featuring 

thermodynamic equilibrium. (This ensemble (named microcanonical) is distributed over a constant 
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energy surface). The majority of real systems possesses property named chaos or intermixing (So-

called КАМ theorem) [13, 14]: in neighborhood of any point of a phase space there is always such 

another point that the phase trajectories of these two points diverge exponentially fast [12, 14].  

 

Figure 5. Illustration of uncertainty increasing or information loss in a dynamic system. Shaded square 

at the moment of time t0 describes uncertainty of initial condition knowledge. (Fig. from [12]) 

 

       Exponential speed is defined as follows: if after 1 second trajectories diverge twice from initial 

magnitude as after the next second they will diverge already in 4 times from initial magnitude. After 

the next second they diverge in 8 times from initial magnitude etc. It is very fast type of divergence. 

The systems possessing property of intermixing always are ergodic. 

 

2.4 Reversibility and Poincare's theorem. 

    

Microstate evolution is reversible. For each trajectory in phase space there is the inverse trajectory 

obtained by inversion of all velocities of molecules into opposite values. It is equivalent to reverse 

demonstration of a film about the process. Almost any trajectories after some time (probably very 

large) should return to its initial microstate. This statement is named Poincare’s theorem about 

returns. (See Appendix С) [6] Most of real systems are chaotic and unstable, and phase trajectories 

from previously neighboring microstates are fast divergent. Therefore at such systems the return time is 

unequal for even previously neighboring microstates. It strongly depends on an exact position of the 

initial trajectory point in a mesh that phase space is divided. But for a very small class called 

integrable systems, this return time is approximately identical for all initial points of phase mesh. 

These returns occur periodically or almost periodically. 

 

2.5 Entropy. [5, 6, 15] 
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Let's introduce the basis concept for the statistical mechanics - macroscopic entropy. Suppose that 

some macroscopic state corresponds to 16 microstates. How many questions that can be answered just 

«yes» or «no» should be asked in order to understand in what one from these 16 microscopic states the 

system exists? If we ask about each microstate we need to ask 15 questions to do it. But it is possible to 

do it in a smarter way. We will divide all microscopic states into two groups, with 8 microstates in 

each group. The first question will be, to what group does microstate concern? Then, the specified 

group will be divided into two subgroups with 4 microstates in every one of them, and we will ask the 

same question. We will continue this procedure until obtaining the single microstate of the system. It is 

easy to calculate that only four such questions for the current case shall be required. It will be the 

minimal number of questions for the current case. This minimal necessary number of question can be 

defined as macroscopic entropy of macrostate. [5, 6, 15] (See Appendix B) It is easy to calculate 

that entropy is logarithm with basis 2 of microstate number and increases with increasing of a 

microstate number. Accordingly, the equilibrium state has maximum entropy, because it corresponds to 

maximal number of microstate. It is often told that entropy is a measure of disorder. Indeed, the more 

disorder in the system the more questions are necessary to be asked to find the microstate of system. 

Therefore, entropy also increases. Why do we need to introduce such "abstruse" conception like 

entropy? It seems like easier to use the number of microstates instead! But entropy possesses 

remarkable property. Let us assume that we have the system consisting of two disconnected 

subsystems. Entropy of a complete system is the sum of two entropies of its subsystems. (Really, full 

number of questions correspond to full system is sum of questions for each of subsystems). But the 

numbers of microstates are multiplied. To make sum is easier than to multiply! 

    The statistical mechanics states some the important properties of physical systems: 

Let the initial macroscopic state correspond to some volume in phase space. The theorem exists that 

during reversible Newtonian evolution of the system, the value of this phase volume is conserved (See 

Appendix F.) [6]. Therefore, the number of microstates corresponding to it also conserves. The 

entropy corresponding to this set of microstates is defined as entropy of ensemble. From conserving 

of phase volume follows that entropy of ensemble is constant in time. 

 

Figure 6. Conservation of volume in phase space. (Fig. from [14]) 
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Figure 7. Change of phase volume element in stable a) and unstable b) cases. (Fig. from [13]) 

 

Figure 8. Different types of flows in phase space: a) nonergodic flow b) ergodic flow without 

intermixing c) ergodic flow with intermixing. (Fig. from [14]) 

 

2.6 Evolution of macroscopic entropy for chaotic systems. 

 

   From properties of ergodicity follows that the system, from almost any initial microstate, will 

transfer after a while to equilibrium state, and there will be in this state a majority of time. It so happens 

because the most of transiting microstates during evolution of system are correspond to equilibrium 

state. Indeed, the equilibrium state has maximum macroscopic entropy. Even if macroscopic entropy 

of initial state was small, after converging to thermodynamic equilibrium it would increase very 

strongly. This property is opposite to the property of ensemble entropy which remains to a constant 

value during evolution. Indeed, entropy of ensemble is defined by a number of microstates that does 

not change during evolution. It is constant and equal to the initial number of microstates. Whereas, 

macroscopic entropy is defined by a number of microstates which corresponds to a current 

macroscopic state. For thermodynamic equilibrium this number of microstates is very large. 

    For chaotic systems (systems with intermixing) the following theorem is true: 
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 Processes of macroparameters evolution with macroscopic entropy decreasing are strongly 

unstable with respect to small external noise. By contrast to this processes of macroparameters 

evolution with macroscopic entropy growth are stable
2
. 

  Let's prove it. We will consider a process with entropy growth. The initial state of the system is 

featured by some macroscopic state far from thermodynamic equilibrium. Such state is characterized as 

compact (closed and limited) and convex (containing a straight segment connected its any two points) 

in phase volume. As the system is chaotic, in a neighborhood of each point there will be also another 

one with exponentially diverging distance between them. Because of phase volume conservation (See 

Appendix F) in a neighborhood of each phase point always there will be also another one, such what 

these two points exponentially converge, and not just diverge. As a result of intermixing initially 

compact small phase volume will spread over constant energy surface in phase space completely and is 

not so convex. y.  It possesses a large quantity of "sleeves" or "branches". But the full volume of phase 

"drop" is conserved in any case. "Sleeves" exponentially expend over their lengths and exponentially 

shrinking over width. Eventually the number of "sleeves" or "branches" grows; they are fancifully 

incurvate and cover by its “net” at phase energy surface completely. This process is named as a 

spreading of phase "drop" [13, 14]. Let’s assume that some small external noise has thrown out a 

phase point from "sleeve" of a phase drop. But shrinking goes perpendicularly to "sleeve" and the 

phase point will come nearer to "sleeve", not to go away from it. It means that process of phase drop 

spreading is stable with respect to noise. 

 

   Therewith, noise can strongly influence microstate, but not macrostate. Macrostate is 

correspondent to an enormous number of molecules microstates. Though external noise can strongly 

change a state of every individual molecule, full contribution of all molecules to macrostate remains 

unchanged. It is related to “law of large numbers” in the probability theory [16]. Most of microstates, 

corresponding to some current macrostate, evolve in entropy growth direction, because probability of 

such evolution is much more. When the phase drop almost spread along the whole constant energy 

surface, its macrostate would correspond to usual thermodynamic equilibrium. Thus even not small 

noise cannot affect noticeably its macrostate because the most of microstates in system correspond to 

equilibrium.  

     Now we will consider an inverse process going with entropy decreasing. The initial state is 

defined by points set in phase space gotten from direct process («a phase drop» spreading) final state by 

molecules velocities reversion. At a reversion of velocities the initial shape of «a phase drop» does not 

change. But shrinking direction because of velocities reversion is not so perpendicularly, but in parallel 

to its "branches". Instead of phase drop spreading there will be its shrinkage. Suppose some small 

external noise has thrown out a phase point from a "sleeve" of a phase drop. But shrinking goes in 

parallel and the spreading goes perpendicularly to the “sleeve” so the phase point will go away from 

                                                 
2
  Actually, we will consider a simple example of ideal gas entropy growth. Gas expands from small volume of 

a box filling this box. Expansion process is clearly stable with respect to small noise. Thereagainst, the inverse 

process is easily prevented by such small external noise because of molecules scattering. 
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the "sleeve", instead of coming nearer. It means that process of phase drop shrinkage is unstable to 

noise 

 

 

 

Figure 9. Direct process with macroscopic entropy increasing and its inverse process. Directions of 

shrinkage are denoted. 

 

2.7 The second law of thermodynamics and the paradoxes related to it. 

 

So, we are ready to discuss the second law of thermodynamics and paradoxes related to it. The 

second law states: 

 In the isolated finite volume systems macroscopic entropy cannot decrease, and can just 

increase or leave constant. Finally macroscopic entropy reaches the maximum in a 

thermodynamic equilibrium state [5, 6]. 

      The principal paradox consists in inconsistency of this entropy growth law with the basis 

properties of a statistical physics featured above. Really, from reversibility follows that for each 

process with entropy increasing there is an inverse process with its decreasing. It is paradox of 

Loschmidt. Besides, from Poincare's theorem of returns follows that the system must return to initial 

state. Hence, and its entropy also will return to initial value! It is paradox of Poincare. 

   The concept of molecules correlations of velocities and positions is closely related to these two 

paradoxes. 

 

2.8 Additional unstable microscopic correlations and their connection with paradoxes of a 

statistical physics. 
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       Correlation is a measure of mutual dependence of variables. (In our case it is a measure of 

mutual dependence of molecules velocities and positions). Pearson’s correlation is the most known 

one. It is a measure of linear relation of two variables (See Appendix D). It is obvious that there are 

much more complex dependencies and corresponding thereto more complex correlations. Correlations 

between various variables lead to restrictions on possibility of selection of some values of these 

variables.  

    The knowledge of a macroscopic state of system is one of sources of correlations. Really, not all 

but just some microstates can already correspond to the given macroscopic state. Thus, their set is 

already restricted. It will lead to restriction on possible molecules velocities and positions, i.e. 

restriction on possible microstate of the system. It is worth noting that all such correlations are 

macroscopic and are manifested in dependence between macroscopic parameters of the system. For 

macroscopic states with small entropy the restriction on a select of possible microstates are great and, 

accordingly, the number of macroscopic parameters and correlations between them is great. For system 

being at thermodynamic equilibrium entropy reaches the maximum, and the number of macroscopic 

parameters and correlations between them is small. 

    Additional or microscopic unstable correlations [17] are defined not just by knowledge of the 

current macroscopic state, but also by that of previous macroscopic history of system. Suppose that the 

physical system evolved from an initial macroscopic state into some another current macroscopic state. 

Thus, not all microscopic states conforming to a current macroscopic state are possible. Only such 

states which at reversion of velocities of molecules lead to an initial state can be considered (property 

of reversibility of motion.). It superimposes additional restrictions (correlation) on a set of the 

microstates corresponding to a current macroscopic state. Additional unstable correlation can be 

spotted in another way, not via knowledge of the past, and via knowledge of the future. According to 

Poincare's theorem, the system should return to a known initial macroscopic initial state in some 

known time. Knowing a certain current macroscopic state and knowing when in the future there will be 

a return, we can superimpose additional restrictions (correlation) on a set of the microstates 

corresponding to this current macroscopic state. These correlations are named unstable because they 

are very unstable with respect to external noise (as we will see below). From definition of these 

additional unstable correlations it can be seen that they are close related to Poincare and Loschmidt 

paradoxes. 

     These correlations are named additional with respect to the macroscopic correlations. (The 

macroscopic correlations are correspondent to the macrostate representation). It is existence of these 

additional correlations that leads to violation of the second law of thermodynamics and ensures a 

possibility of returns and the reversibility, i.e. appearances observed in Poincares and Loschmidt 

paradoxes. 

One of the basic properties of additional or microscopic correlations is instability. Interaction of 

different parts of observable system or interaction of the system with environmental systems (including 

the observer) leads to additional disappearing of correlations.  To be more exact, these additional 

correlations "spread" between parts of the system and/or between the system and surrounding systems. 

Suppose there is some initial state with small entropy. After some short time the first collisions 

between molecules shall occur. Their positions and velocity become correlated (Indeed, it can be 
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checked up by velocities converting. Finally we again obtain the initial state). Meanwhile, only close 

pair of the molecules at collision are correlated. However, in the process of increase of number of the 

collisions, arising correlations will include larger and larger number of molecules. Finally the 

correlations will be spread over the entire increasing volume of the system. There is "spreading" of 

correlations in the system [17].  

 

Figure 10. Scattering and correlations. Correlations flow. (Fig. from [17]) 

 

Similarly, if the system consists of two non-interacting systems, correlations will exist only inside 

each system. Returns and reversibility are possible for each of such subsystems. Suppose there is at 

least a small interaction between these subsystems. Then correlations "will flow" from one subsystem 

into another, and these two systems become dependent. Accordingly, olny their joint return or 

reversibility will be possible. 

 

 

                   3. Principal paradoxes of quantum mechanics 

 

3.1 Basic concepts of quantum mechanics - the wave function, Schrodinger equations, 

probability amplitude, measurands, indeterminacy principle of Heisenberg [18, 19]. 
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    For clarity of presentation, we will give at first the basic concepts of a quantum mechanics. 

    Motion in quantum mechanics is featured not by a trajectory, but by a wave function. It is a 

probability wave, to be more exact, a "probability amplitude" wave. It means that the quadrate of 

amplitude module of the wave function in some point gives probability to detect a particle in this point. 

Change in time of this probability wave is defined by Schrodinger equation [19]. This is a linear 

equation, i.e. the sum of its two solutions is also the solution. Thus, amplitudes of probabilities are 

summed, but not probabilities themselves. Indeed, the probability is defined by the quadrate of 

amplitude. It imports nonlinearity to a wave function evolution process.  

     Any measurand (for example, momentum) is featured by an orthonormal, full set of functions (a 

set of eigenfunctions of a measurand). The wave function can be expended to this set of 

eigenfunctions. Each of eigenfunctions set corresponds to some value of a measurand (eigenvalue). 

Expansion coefficients give probability amplitude for each such value. If the wave function is equal 

to some eigenfunction of the measurand set so the value of the measurand in this case is equal to the 

correspondent eigenvalue. If it is not the case, we can specify just probabilities for various eigenvalues. 

    The concept of a particle velocity has no explicit physical sense because there is no well defined 

trajectory of particle and there is just «a probability wave» [19]. Momentum is defined now not via a 

product of velocity and mass, but through wave function expansion coefficients over momentum 

eigenfunctions. This set of eignfunctions is similar to an orthonormal, full set of Fourier functions used 

in Fourier analysis.   

    Coordinate eigenfunctions are proportional to Dirac delta functions. The coefficients of wave 

function expansion over Dirac delta functions are given by value of a wave function in an infinite point 

of Dirac delta function. It corresponds to the above defined sense of a wave function as probability 

amplitudes.  

      Both momentum and coordinate correspond to various sets of the eigenfunctions [19]. 

Therefore, no wave function can correspond simultaneously to both a single momentum 

eigenvalue and a single coordinate eigenvalue, contrary to the classical mechanics. There it is the 

well-known uncertainty of Heisenberg [19]. (See Appendix G.). The reason is related to difference 

of its definitions in the quantum and classical mechanics.  

 

   3.2 Pure and mixed states. Density matrix [15,18, 20]. 

 

   Quantum mechanics is most completely described by its wave function. This is the so-called pure 

state. For classical mechanics it was a point in a phase space. What is analogue in quantum mechanics 

to a classical statistical ensemble of systems (a cloud of points in a phase space)? It is a set of wave 

functions where to each function there corresponds its probability (instead of "probability amplitude" 

for expansion of pure state over eigenfinctions). It is definition of the mixed state. 

    Suppose that some system is a part of some large systems. Then, even if the large system is 

featured by a pure state, the smaller subsystem must be featured by the mixed state in general case. 

Exception is the case when the pure state of the large system can be described as a product of the small 
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system wave function and its environment wave function. Let’s suppose, for example, that the small 

quantum system interacts with the device which is in a pure state. Although the large system (including 

the device and small quantum system) can be featured by a pure state, the small quantum system after 

measurement in general case is already featured by the mixed state. 

    For the equivalent representations of mixed and pure states density matrix is used [20]. Let us 

choose some measurand and the corresponding set of eigenfunctions. As the density matrix 

representation in basis of these egenfunctions is featured by a square matrix. Every such function 

corresponds to a diagonal element of a density matrix. The value of the element is equal to probability 

to detect the corresponding eigenvalue during measurement of the measurand.  

   Nondiagonal elements of a density matrix define correlations between correspondent pairs of 

eigenfunctions. Nondiagonal elements have maximum value in a pure state, but for the mixed states 

their magnitude decreases and can become equal to zero. The density matrix always can be rewritten 

over a different set of eigenfunctions corresponding to some different measurand.  Density matrix gives 

maximally full description of state of the system. Consequently, evolution of density matrix gives full 

description of evolution of the system. (See Appendix I.) 

 

3.3 Properties of the isolated quantum system with finite volume and a finite number of particles 

[15]. 

 

Similar to classical systems, we will consider properties of the isolated (closed) quantum system 

with finite volume and finite number of particles. 

1) Such quantum systems evolve over reversible equations of motion (Schrodinger equation) 

2) Poincare's theorem is also correct for such systems. Moreover, quantum systems properties are 

similar to classical integrable systems properties. (Integrable systems are a very small part of all 

possible classical systems.) As follows, their returns occur in a nearly periodic fashion. Besides, the 

period of these returns depends on initial conditions very weakly. 

3) For quantum systems it is also possible to define entropy of ensemble. Entropy is a measure of 

uncertainty knowledge about system state. Pure state gives maximally full description of quantum 

system. Therefore for any pure state entropy is equal to zero by definition. For the mixed state case, the 

system corresponds to a set of pure states. Therefore, entropy is already above zero. Suppose that the 

probability one of the pure states is close to 1 (one). Then this mixed state is almost pure and its 

entropy is almost equal to zero. When all pure states of the mixed state have equality probability, 

entropy reaches its maximum. 

4) During evolution of a quantum system the pure state can evolve just to the pure one. In the mixed 

state the probabilities of its pure states also leave unchanged. So entropy of ensemble does not change 

during the quantum system evolution.  

5) We can feature large quantum system by a small number of parameters named macroscopic 

parameters.  To such mixed macroscopic state there corresponds the large set of pure states defined by 

microscopic parameters. Accordingly, on the basis of this pure set it is possible to calculate entropy of 
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a macroscopic state. We will define this entropy as macroscopic entropy. Contrary to entropy of 

ensemble the macroscopic entropy should not conserve during evolution of quantum system. 

6) While measuring a quantum system, it will cease to be considered as an isolated system because 

of interaction with the measuring device. Accordingly, its initially pure state evolves to mixed one, and 

its microscopic entropy increases. Such evolution can not be reversed just by inversion of measured 

system. Inversion of the measuring device is necessary too. 

 

  3.4 Theory of measuring in quantum mechanics [15, 18] (Appendix J, O, P). 

 

    To check a scientific theory, it is necessary to make measuring by means of measuring devices. It 

is, at least, two measurings: for the initial and final state. If we know the initial state we can compare 

the measured final state with the state predicted by theory.  So, in such a way we can check correctness 

of the theory.  

    In the classical mechanics measuring is a simple process of finding current parameters of the 

system not influencing its dynamics. In this case the full description of system given by all 

microparameters yields to the unique result of measuring. 

    In quantum mechanics situation is much more complicated. Measuring influences dynamics of a 

quantum system. Besides, in quantum mechanics, for a general case, we can predict just some 

probability of measurement result despite the fullest knowledge of its state (i.e. measured system is in a 

pure state). 

    Let's feature measuring process in quantum mechanics more in detail. Let the system in the 

beginning is featured by some wave function. Measuring of some measurand leads to the situation 

when the wave function transfers to one of eigenfunctions of a measurand with some probability. This 

eigenfunction corresponds to measured value of measurand which is equal to its eigenvalue. As it is 

written above, the probability of such measuring is proportional to the quadrate of wave function 

amplitude. It is obtained by expansion to eigenfunctions. Thus, after measuring, the system transfers 

from pure state to mixed state. It is ensemble of these possible measurement results with correspondent 

probabilities. This process is named reduction of wave function. It is not described by Schrodinger 

equation. Indeed, the Schrodinger equation describes just evolution from a pure state in the pure one. 

But a result of a reduction is a mixed state obtained from an initial pure state. Besides, the Schrodinger 

equation is reversible. But the process of reduction is nonreversible. The second type of quantum 

evolution is possible because during measuring the quantum system is not isolated - it interacts with 

the macroscopic classical device.   

           The macroscopic device, in order to be consistently featured by quantum mechanics, should 

be actually ideally macroscopic, i.e. either to be in infinite space, or to consist of infinite number of 

particles. The ideal macroscopic device does not obey Poincare's theorem of returns and has quite 

certain macroscopic state during all moments of measuring. For the ideal macroscopic device, quantum 

laws during any finite time yield the same results as classical laws. It ought to be remarked that the real 

measuring device (i.e. in the finite volume with finite particles number) is macroscopic but 

approximately. This note is very essential to our future analysis. It is the main source of paradoxes 
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considered below. Thus, evolution of quantum system is divided into two aspects. The first is 

reversible Schrodinger evolution. The second is the nonreversible reduction of wave function occurring 

at interaction with the macroscopic classical device. 

      We explicitly observe classical devices only, not small quantum systems. So there is no 

necessity to represent in mind these "mysterious" quantum objects. Indeed, we can consider quantum 

objects just as some mathematical abstracts, allowing finding connections between results of 

observations obtained by means of measuring devices. Measuring devices are quite classical and 

representable. They do not have, for example, parameters which cannot be measured simultaneously, 

like coordinate and momentum in quantum mechanics. "Evident", "physical", "intuitive" representation 

of quantum mechanics is necessary just for simplification of understanding of the most complex 

mathematical models of quantum mechanics. Such understanding can not be completely possible, 

because our mind intuition is based on the classical world around us. But as it is written above, there is 

no such practical necessity. However, this impossibility is a real source of well known "magic" and 

"mysteriousness" of a quantum mechanics. Actually, there is no such “mysteriousness”. 

 

3.5 Complexity of attempt of "classical" interpretation of quantum mechanics: introduction of 

hidden parameters and paradox EPR [18]. 

 

       Quantum mechanics laws have probabilistic nature, and many measurands cannot be measured 

simultaneously. However, many laws of classical statistical mechanics are also probabilistic. There 

their probabilistic nature is caused by the hidden microscopic parameters (Appendix U): velocities and 

positions of all molecules. Any classical macroscopic state is featured by a set of possible 

corresponding microstates. Similarly, we can try to interpret the quantum probability by introducing the 

hidden parameters. The knowledge of all these hidden parameters allows to uniquely determinate all 

variables in the quantum system. Similarly to the macroscopic classical state, in quantum mechanics 

some observed state corresponds to a set of possible values of the hidden parameters. However, in 

quantum mechanics existence of such hidden parameters is possible only under the following 

assumptions: 

   1) Measurement (except for special cases when one of measurand eigenfunctions is equal to wave 

function of the observed system) changes the state of the observed system. In a classical case it is 

possible (at least in principle) to make any measurement without perturbation of the observed system. 

  2) All hidden parameters cannot be measured simultaneously. Let us remind Heisenberg 

uncertainty principle. Measuring changes a system state (a wave function reduction), and, hence, all 

hidden parameters cannot be also measured by a set of sequential measurements. All hidden parameters 

have some well defined values. However, there is no such real and observable physical state in which 

all hidden parameters have these well defined values, but just some probability distribution of them 

exists. In any real experiment we can measure only a part from these parameters. Simultaneously this 

measuring will lead to uncontrollable perturbation for the rest of parameters. 

   3) Existence of the hidden parameters in quantum theory is impossible without introduction 

of long-range interaction between them [18]. This long-range interaction acts instantaneously across 
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even an infinite distance. However, there is no contradiction with the relativity theory maximal velocity 

limit, because this interaction can not transfer any information or a mass. Really, the parameters are 

hidden so the interaction between them is also hidden and not observed. The observed appearances can 

be explained by usual correlation of random values. 

   This necessity of introduction of unobserved long-range interaction is a too high price for 

classical "presentation". So the hidden parameters interpretation usually are not used in literature on 

quantum mechanics. It is easier to consider quantum mechanics laws just as some mathematical 

method to calculate usual random correlation of observable macroscopic parameters for measuring 

devices. 

   This necessity of introduction of long-range interaction of the hidden parameters is illustrated by 

well-known Einstein-Podolsky-Rozen "Paradox" (EPR) [18], (Appendix R).  This "paradox" is 

actually fictitious. It arises just when somebody wants to make classical interpretation (i.e. hidden 

parameters interpretation) of quantum mechanics by "the small price" (without long-range interaction). 

    It is based on the analysis of electron-positron pair states.  In the beginning the particles were 

together, and then scattered over large distance.  

   An electron (or a positron) has intrinsic angular momentum which is defined as spin. Classical 

analogue of the intrinsic angular momentum is the angular momentum of the rotating round intrinsic 

axis. Unlike the classical intrinsic angular momentum, the absolute value of a spin projection has 

invariable magnitude (1/2), and its projection to any axis has only two possible values: along the axis 

and across the axis (+1/2 and-1/2). If we choose the other axis it will possess the same property. 

However, projections to two different axes cannot be measured simultaneously. There is no quantum 

state in which spin projections to two different axes have certain values. Suppose that the electron-

positron pair is conceived with the total spin equal to zero.  The electron and the positron will move in 

opposite directions and up to large distance between them. Exact values of their spins are unknown. 

Suppose we have measured a spin +1/2 of an electron along a some axis (we will designate it as axis 

Z). From the conservation law of the full spin the positron spin projection on the same axis is equal to-

1/2. We may also measure the positron spin projection along any other axis. If this axis is 

perpendicular to axes Z we can measure both +1/2 and-1/2 with equal probability. For some different 

axis, provisions of quantum mechanics also allow to calculate precisely the mutual probabilities of 

positron-electron spin projections. 

    Let's assume that spin projections have "classical" interpretation as hidden parameters. 

Measurement just makes known formerly the hidden value. Then why does some dependence of 

measured spin projections of an electron and a positron exist?  Are these usual random correlations? Or 

does some long-distance interaction between hidden parametres really exist? With the help of so-called 

Bell’s inequality (Appendix T) it is possible to prove the following theorem: There is no set of 

hidden parameters and its probability distributions that can explain mutual probabilities 

calculated from quantum mechanics without introducing some long-distance interaction between 

these hidden parameters. So long-distance spins interaction exists in hidden spins theory. 
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Figure 11. EPR experiment. 

 

    However, it is possible to consider not all hidden parameters but just results of measuring. In this 

case dependence between electron and positron spins can be easily explained by using usual random 

correlations between the measured parameters. It is result of the fact that we are capable to measure 

simultaneously only two projections of a spin (one for an electron and one for a proton) from large list 

of all possible hidden parameters. 

     The dependence between long-range objects is defined as quantum correlation, if 

introduction of hidden parameters for explaining this correlation is impossible without long-range 

interaction of these hidden parameters. For classical correlations it is always possible. After 

measuring the quantum correlations transform to usual classical ones. 

     Let's sum up. Introduction of hidden parameters in quantum mechanics is impossible without 

long-range interaction between these parameters. It is possible to refuse hidden parameters and to 

consider quantum mechanics just as some mathematical apparatus giving random dependence between 

measured properties of large classical devices. In this case, any long-range interaction is not required. 

Dependence between observed values can be explained by usual random correlation. Correlation exists 

because the measured quantum objects were initially together. 

 

3.6 Problem of two slots as an illustration of quantum mechanics complexity 

 

Because of impossibility of "easy" classical interpretation of quantum mechanics, a well-known 

American physicist Richard Feynman supposed that nobody understands quantum mechanics. Once he 

noted that «the single secret of quantum mechanics can be expressed by just one experiment that with a 

double slot and electrons. It is a modern version of the classical experience made in 1801 by an English 

scientist Thomas Young for demonstrating of the wave nature of light». This experiment was very 

simple. In Young’s experiment light from a source (a narrow slot S) illuminates a screen with two 

closely positioned slots S1 and S2. While transiting through each of slots, the light is scattered by 

diffraction, therefore on white screen E the light beams which have transited through slots S1 and S2, 

were overlapped. In the field of overlapping of light beams a number of alternating light and dark 

bands is formed - that we define now as an interference pattern. Young interpreted the dark lines as 
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places where "crests" of light waves from one slot meet "troughs" of waves from the other slot, 

quenching each other. The bright lines occur in places where crests or troughs from both slots coincide, 

making light amplification. During almost two hundred years varied variants of two-slot-hole Young 

experiments were considered as a proof of wave nature of waves on water, radio signals, X-rays, sound 

and thermal radiation.  

    We will define a concept of path difference of waves from slots. Suppose there is some point on 

the final screen. The difference of distances from the two slots to this point, measured in wave length 

units, is named as path difference for this point. If it is an integer we have wave the maximum in this 

point. If it is an integer and half we have the minimum. 

 

 

Figure 12. Young’s experiment with light. (Fig. from [96]) 

 

     It’s remarkable that Young’s experiment can be made with electrons too. Instead of sunlight 

beam, a beam of electrons transits through parallel slots. The screen plate is coated with a luminophor 

(similar to the screen of a television tube). Each electron colliding with the luminophor leaves an 

illuminating point, thus registering its arrival in form of a usual particle. But the image generated by all 

electrons makes surprising impression. It gives an interference pattern similar to that which is obtained 

in case of light. It is absolutely unlike to that we would obtain by throwing balls in a fence with two 

boards taken out (it is similar to two slots). The two-slot-hole experiment with electrons demonstrates 

that these particles can behave as a wave. 
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Figure 13. Young’s experiment with electrons. (Fig. from [97]) 

 

 

 

 

 

 

Figure 14. Young’s experiment with balls and fence. 

 

If one of slots is closed in two slots electrons diffraction experiment then an interference pattern 

disappears. The band of the electrons is registered instead. Hereupon we open the second slot and close 

the first one. In such a way we obtain the second band. The final pattern is similar to the pattern 

obtained by the balls game described above, i.e. a simple sum of these two bands. But if the both slots 

are opened simultaneously we observe a complex interference pattern instead. The results of this 

experiment can not be explained by interaction of electrons - the same result is obtained by emitting of 

electrons one after one. The reason is that electron position is not defined by a certain trajectory, by 

wave of probabilities. Two waves from two slots summarize and give an interference pattern. The 

quadrate of amplitude of sum of these two waves on the screen gives probability to find an electron 

there.  

    Let's assume that we arrange a detector which shows through what of slots an electron transits. 

The final pattern in this case is similar to results of the experiment with alternately closed slots. I.е., the 

interference pattern disappears. This result is explained by influence of the measuring device - the 

detector. There is reduction of wave function and its pure state transfers to the mixed one. Thus, 

instead of the sum of wave amplitudes from two slots, the probabilities summarize, and the 

interference pattern disappears. 
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   This experiment shows two main properties of quantum mechanics. At first, we cannot predict 

an exact final position of an electron in the screen, and we can discover just probability for all point. 

Only a large number of electrons gives a quite certain and predictable distribution pattern on the 

screen. In the classical case the result was predictable for even a single particle. Secondly, we cannot 

perform any measuring of the intermediate state of an electron, without perturbation of this 

intermediate state causing change of further measuring results. So, having checked up through 

what of the slots the electron has transited, we will destroy the further interference pattern. In classical 

mechanics it was always possible, at least in principle, to make measuring without perturbation of the 

system dynamics.  In quantum mechanics such measurement is possible only if wave function of the 

measured system is identical to some eigenfunction of a measurand. 

   The experiment with two slots also allows explaining the mechanism vanishing of quantum 

interference effects for macroscopic systems. It occurs under following three requirements: 

1) Coherent, "monochromatic" wave considering in the experiment interacts with its environment or 

its source. This interaction leads to transformation of its pure state to the mixed state. As 

consequence, the probability wave is not an infinite sine curve, but set of sine curve segments. Such 

segment of the sine curve is named a wave packet. A phase of some wave packet is random value. 

Length of a wave packet is about 10-20 wave lengths. It has the order of wave-atom interaction radius. 

The atoms correspond to the surrounding medium or the source.  

2)  Consideration system with macroscopic sizes. The distances between slots (D) are much larger 

than lengths of a wave packet (n λ) and distances from the slots to the screen (L). More precisely:  D>> 

√ (L∙nλ), where λ is a wave length. 

3) Introduction of macroscopic parameters (averaging wave intensity on a length much larger than 

lengths of a wave packet, and during the period of time much longer than the time of the wave packet 

transiting through some point).  

 

 

      As the distance between slots increases (at constant value L), the path difference becomes 

much larger than a wave packet length for the most of points of the screen. As result, phases of the 

waves coming from the slots become random. Hence, it’s not amplitudes of wave that are summarized 

but coarsen macroscopic intensities. Therefore, the interference disappears for the most of points on the 

screen. As the distance between slots becomes larger than the distance to the screen, the interference 

remains just in the small neighborhood of a screen point which would be precisely in the middle 

between slots. The size of an interference range gets equal to a wave packet. At the further increasing 

of distances between slots, wave intensity in this interference range starts to decrease and converges to 

zero without decreasing its size
3
. So, small interference effects are not observed at coarsened (i.e. 

macroscopic) description.   

    All these effects of vanishing of interference are caused by macroscopic nature of the system and 

its parameters and also by the mixed nature of initial state. Such transformation of a wave from pure 

                                                 
3
 It must be mentioned that this system has infinite size in wave propagation direction and the wave is not reflected by the 

screen. Therefore, unlike the finite systems considered below, if the interference disappears it does not appear again. On 

the other hand, when the distance between slots converges to infinity (at constant value L) quantum interference effects 

converge to zero (for any finite wave packet length and for any finite degree of macroparametres coarsening. 
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coherent state to mixed state because of interaction (entangling) with its environment is named 

decoherence (from Latin cohaerentio - connection) [21-25], (Appendix P). The system is intermixed 

or entangling with a surrounding medium. For macroscopic (i.e. very large) systems decoherence leads 

to vanishing of quantum interference, as discussed above in the experiments with two slots. The 

decoherence theory has an important consequence: for the macrostate quantum theory predictions are 

almost coincide with predictions of the classical theory. But the price for this coincidence is 

irreversibility as we will see further. 

 

3.7 Schrodinger’s cat paradox [26] and spontaneous reduction [18]. 

 

    The complete violation of the wave superposition principle (i.e. the full vanishing of interference) 

and the wave function reduction would occur only during interaction of quantum system with an ideal 

macroscopic object or a device. The ideal macroscopic object either has  infinite volume, or consists of 

infinite number of particles. Such an ideal macroscopic object can be consistently described both by 

quantum and classical mechanics
4
.  

   Further on (unless the other is assumed) we consider, similarly to the classical case, only systems 

with finite volume with a finite number of particles. Such devices or objects can be considered as 

macroscopic just approximately
5
. 

   Nevertheless, a real experiment shows that even for such non ideal macroscopic objects the 

destruction of superposition and correspondent wave function reduction may occur. We will define 

such reduction of imperfect macroscopic objects as spontaneous reduction. The spontaneous 

reduction leads to paradoxes which force to doubt completeness of quantum mechanics, despite all its 

tremendous successes. We will reduce the most impressive paradox from this series - Schrodinger’s cat 

paradox (Schrodinger 1935) [26].                                                                                                                     

   It is a thought experiment which clarifies the principle of superposition and wave function 

reductions. A cat is put in a box. Except for the cat, there is a capsule with poisonous gas (or a bomb) 

in the box which can blow up with 50 percent probability because of radioactive decay of plutonium 

atom or casually illuminated light quantum. After a while the box is opened and one gets to know 

whether the cat is alive or not. Until the box is opened (measuring is not performed), the Cat stays in a 

very strange superposition of two states: "alive" and "dead". For macroobjects such situation looks very 

                                                 
4
 Thus, observing light of a remote star, we study it, but we do not influence as it could have been expected on basis of 

quantum measuring theory. We change only a state of star photons reaching us. This is because we consider the Universe 

space as infinite. So, illuminated photons have no chance to return to the star and to change its state. In the case of the 

finite Universe, observable photons  can return to a star and influence it. However, for a very large Universe, a very long 

time may be needed.  

 
5
 For example, the above described star-observer system in a very large finite Universe would behavior similar to an 

infinite Universe during a very long, but finite time only. 
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mysterious
6
. (Thereagainst, for quantum particles superposition of two different states is very natural.) 

Nevertheless, no basic prohibition for quantum superposition of macrostates exists. 

    The reduction of these states at opening the box by an external observer does not lead to any 

inconsistency with quantum mechanics. It is easily explained by interaction of the external observer 

with the cat during measuring of the cat’s state. 

    But the paradox arises at the closed box when the observer is the Cat itself. Really, the Cat 

possesses consciousness and it is capable to observe both itself and the environment. At real 

introspection the cat cannot be simultaneously alive and dead, but is just in one of these two states. 

Experience shows, that any consciousness creature or feels itself live, or it is dead. Simultaneously 

both such situation does not exist. Therefore, spontaneous reduction to two possible states (alive and 

dead) really occurs
7
. The cat, even together with all contents of the box, is not an ideal macroscopic 

object. So such observable and nonreversible spontaneous reduction contradicts to reversible 

Schrodinger quantum dynamics. In current case it can not be explained by some external influence, 

because the system is isolated. [18, 27, 7]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Experiment with Schrodinger Cat. (Fig. from [98]) 

 

        There are many problems related to a spontaneous reduction. Whether does it actually 

contradict to Schrodinger quantum dynamics? When the system is enough macroscopic that the 

spontaneous reduction can happen? Whether must such almost macroscopic system have 

consciousness like a Cat? What are time moments when a spontaneous reduction can occur? 

 

3.8 Zeno Paradox or «paradox of a kettle which never will begin to boil». 

 

    The "paradox of a kettle which never will begin to boil" is related to the last of the above 

mentioned problems. Actually, here are two paradoxes, but not just one.   

                                                 
6
 Sometimes there try to describe such situations with help of art through "paradoxical" images [3, 28], (Appendix V). 

7
 Though there are some exotic attempts to understand how the consciousness can perceive such exotic states 

of macroobjects [3, 28], (Appendix V). See also the previous reference.  
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Let us assume that there is some quantum process. For example, decay of a particle or transmission 

of a particle from one energy level on another one. 

     The first paradox is as follows. If time intervals between acts of registering converge to zero, 

then the specified process generally never happens during any chosen finite time interval! It can 

be explained by influence of quantum measuring. Measuring leads to reduction to the mixed state 

(broken and not broken particle). Besides, relative process rate (over one particle) converges to zero 

when measurement time interval converges to zero. These two facts lead to process stoppage for 

frequent measurements.  

    The second paradox is as follows. In real life decay of the substance containing large number of 

particles is always featured by the exponential law. It is not casual. The relative velocity of such decay 

is constant in time. Accordingly, it is impossible to find observationally "age" of such substance if we 

do not know an initial number of not broken particles, and broken particles taking away from the 

system. But quantum decay, according to the quantum mechanics equations, is featured not by the 

exponential law. Therefore, the relative rate of decay at the beginning of the process is equal to zero, 

and then increases. We can make paradoxical conclusion that it is possible to introduce non-physical 

concept of the system "age".  "Age" can be easily found through the current relative rate of system 

decay. 

    We will resolve this second paradox in the part of the paper concerned to Observable Dynamics. 

 

3.9 Quantum correlations of system states and their connection with paradox of the Schrodinger 

cat.  

 

        The concept of quantum correlation of system states is closely related to the paradox of 

Schrodinger cat. Suppose there is some spontaneous reduction of states of the alive or dead cat. Any 

further measuring then will depend on the previous Cat's state. It can be either "alive cat", or "dead 

cat". Observed data can be divided into two non-overlapping groups: one group will correspond to 

“alive cat”, the other one to "dead cat". But if Cat is in quantum superposition of these two states the 

results of the further measurements will depend on the both states of Cat. So it cannot be divided 

already into two non-overlapping groups. This connection between the initial states, expressed in 

impossibility to divide further results of measuring into independent non-overlapping groups 

corresponding to such initial states, is named "quantum correlation of system states".  

   In mathematical language, this fact is explained by nonlinearity of connection between probability 

of an observed data and a wave function. In other words, the quadrate of sum is not equal to sum of the 

quadrates. Appearing additional terms (or the interference terms) are the measure of quantum 

correlations.  

     Quantum correlations are corresponding also to nondiagonal elements of a density matrix. For 

the mixed state obtained as a result of measuring, all nondiagonal terms are equal to zero.  

     Let's express the paradox of Schrodinger cat in the language of quantum correlations: on the one 

hand, the cat introspection gives only one from two possible results: or "alive cat", or "dead cat".  Thus 

there is some spontaneous reduction, and quantum correlation between these states disappears. It 



                           

 

 

27 

means that further results of measuring can be divided into two independent non- overlapping groups 

corresponding to initial states.  

    On the other hand, according to Schrodinger equations, quantum correlation cannot disappear 

itself, without presence of external forces.  It means that further measuring results can not be divided 

into two independent non- overlapping groups corresponding to initial states.      

    This inconsistency between Schrodinger dynamics and the observable spontaneous reduction will 

lead to the paradox. 

 

4. Quantum mechanics interpretations. Their failure to solve the paradoxes 

 

 One of the problems that we wrote of above is difficulty of understanding of quantum mechanics 

on the basis of our classical intuition based on the real word experience. There are various 

interpretations of quantum mechanics [18] that can also serve for simplification of such understanding. 

It is necessary to specially emphasize that neither of interpretations of quantum mechanics would lead 

to solving the above mentioned paradoxes, they just allow understanding of quantum mechanics in 

visual and clear way for our intuition. We will restrict ourselves by only three of the wide list of 

possible interpretations. The most popular for today and also a very evident one is multi-world 

interpretation.  

 

4.1 Multi-world interpretation. [29, 30, 18]. 

 

Let's describe it in more detail. From the example of Schrodinger cat we can see that quantum 

evolution can lead to various and macroscopically distinguishable conditions. We really observe only 

one of them. Multi-world interpretation states that all these states exist simultaneously in certain 

“parallel worlds”, but we (or a cat in our mental experiment) can observe only one of macroscopic 

alternatives. 

   The similar approach illustrates the concept of spontaneous reduction by the following. As all the 

worlds exist simultaneously, all of them can influence results of some measuring. Generally, results of 

measuring cannot be divided into two disconnected groups related to the alive and dead cat. It means 

that these worlds correlate with each other and each of them influences the results of measuring. 

Presence of spontaneous reduction at measuring will lead to losses of this correlation. Results of 

measuring will break up into independent groups corresponding to various worlds.  
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Figure 16. Multi-world interpretation. (Fig. of Max Tegmark from [99]) 

 

The multi-world interpretation as such does not explain Schrodinger cat paradox. Really, the Cat 

observes only one of the existing worlds. Results of the further measurings depend on correlations 

between the worlds. But neither these worlds nor these correlations are observed. «Parallel worlds» that 

we know nothing about can always exist.  But these worlds can really affect results of some future 

experiment of ours. I.e. the knowledge of the current state only (in our "world") and quantum 

mechanics laws does not allow us to predict the future even probabilistically! But it was just such 

predictions the quantum mechanics has been developed for! Just on basis of spontaneous reduction that 

destroys quantum correlations between the worlds, we can predict the future using knowledge of only 

current (and really observed) states of our "world". The paradox of Schrodinger cat returns but just 

having its shape changed. 

   It is not clear also how to define the macroscopic states corresponding to “separation” on “the 

parallel worlds”. (Really, wave function expansion is ambiguous, and different sets of orthogonal 

functions can be used for this purpose.) It is not clear how to find the exact moments of time when this 

"separation" happens. But solving the paradoxes (contrary to a very widespread mistake) is not the 

purpose of quantum mechanics interpretations. 

 

4.2 Copenhagen interpretation. 

 

Another interpretation is the Copenhagen interpretation. It is used in today’s papers and is standard 

for most usual book and papers in quantum mechanics field. It states that at the moment of observation 
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of macroscopic states, spontaneous reduction occurs and quantum correlations disappear. So it results 

in the paradoxes described above.  

   It is necessary to score that the reduction in the Copenhagen interpretation happens just for a 

chosen final observer in the sequence of measurings. From his point of view, the experiment  should be 

described. The reduction, like velocity of the system, depends on the choice of the observation system. 

     Let’s suppose that some external observer investigates some other observer, for example the 

external observer (scientist) investigates the Schrodinger Cat. No spontaneous reduction, really 

observed by the Cat himself, happens for the external observer. 

 

 

Figure 17. Schrodinger cat experiment from the viewpoint of external observer (experimenter) and self 

observation (the Cat itself) (Fig. from [100]) 

 

    From external observer point of view the reduction happens just when the external experimenter 

opens the box and consequently interacts with the Cat and results in the reduction. It means that there 

is no paradox for the external observer.  

     Only when the Cat is regarded as the final observer, there is spontaneous reduction, and 

consequently there would be the paradox described above. Really, the Cat can feel itself only alive or 

dead, but not in these two states simultaneously!  

       This note is very important, as its misunderstanding leads to absolutely erroneous statements 

[29, 30], that the Copenhagen interpretation is incompatible with the multi-world interpretation. 

Actually, as we will see further, the difference between these interpretations is not observable and so 

both interpretations can be used.  
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4.3 Interpretation via hidden parameters. [18], (Appendix S,T,U) 

 

Introduction of the hidden parameters defines one more interpretation related to EPR paradox. It is, 

for example, the wave-pilot theory of de Broglie - Bohm [18]. This theory includes coordinates, 

velocities, spins and wave function (wave- pilot) being changed in time according to Schrodinger 

equations, as hidden parameters. Thus, quantum correlations (as we saw above during discussion of 

EPR paradox) led to locality violation, i.e. long-range interaction between the hidden parameters. For 

explanation of connection between actually measured (not hidden) parameters such long-range 

interactions are not necessary. These connections are perfectly described by usual correlation of 

variables. Thus, the reduction of a macroscopic state (or happening at measuring, or spontaneous) leads 

to vanishing of quantum correlations which  become classical ones.  

     Difference between quantum correlations and the classical correlations, appearing after  

reduction, is expressed not only in the existing long-range interaction. Let the correlated long distance 

parts of the system (these parts was together in a pure state in the beginning) again appear together 

after some, may be, and long time. Thus in a quantum case we obtain pure state again, but in the 

classical case accompanied by reduction (or happening at measuring, or spontaneous) - the mixed one. 

In the case of spontaneous reduction it leads to inconsistency with Schrodinger evolution. Paradoxes do 

not disappear but just acquire some different appearance. 

 

5. Definition of complete physical system in the theory of measuring. 

 
In measurement theory it is necessary to include both the observer and a surrounding medium into 

the complete system because in many cases even their small influence cannot be neglected. As it will 

be clear later on it is true not only for quantum but also for classical mechanics. Generally the complete 

system consists of three parts: the observable system, the surrounding medium, and the observer. 

The observer also consists of three parts: the measuring device, the person of the observer and the 

memory of the observer. The memory is necessary for keeping the sequence of observation. This 

observation sequence can be used for comparison with the theory. It is necessary for memory to be 

isolated from its entire environment, except for the channel of receiving information. If some 

external factors can influence it, changing or erasing its contents, no experiments for the theory 

verification are possible. It is a very important statement. It helps to resolve many paradoxes, including 

those considered below. 

   The final point of the complete physical system is the observer's memory. The system includes 

only one observer. Certainly, many observers can exist, but we should choose a point of view of only 

one of them. The rest ones would be considered as just parts of the observable system or the 

environment. But which one must be chosen? The problem is solved similarly to relativity theory - it is 

possible to choose any one. But it is important to interpret all facts from the point of view of the single 

chosen observer. For Schrodinger Cat paradox case the observer can be either the Cat, or the external 

observer-experimenter. (But not the both together!) 
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6. Solution of the paradox of Schrodinger cat. 

 
    Let's remind that the paradox of the Schrodinger cat consists in inconsistency between the 

spontaneous reduction observed by a cat and Schrodinger evolution forbidding such reduction. To 

correctly understand the paradox of Schrodinger cat it is necessary to consider it from the point of view 

of two observers: the external observer-experimenter or the Cat, i.e. introspection. 
       In case of the external observer-experimenter the paradox does not arise. If the experimenter 

tries to see whether the cat is alive or not, it influences inevitably the observable system (in agreement 

with quantum mechanics) that leads to reduction. The system is not isolated and, hence, cannot be 

featured by a Schrodinger equation. The reducing role of the observer can also be played by the 

surrounding medium instead. This case is defined as decoherence. Here the role of the observer is more 

natural and is reduced just to fixing decoherence. In both cases there is entangling of measured system 

with the environment or the observer, i.e. there are correlations of the measured system with the 

environment or the observer. 

   What will be if we consider the closed complete physical system including the observer, observed 

system and environment? It is Cat's introspection case. The system includes the Cat and his box 

environment. It ought to be noted that the full introspection (full in the sense of quantum 

mechanics) and the full verification of quantum mechanics laws is impossible in the isolated 

system including the observer himself. Really, we can measure and analyze a state of external system 

precisely in principal. But if we include ourselves as well in consideration there are the natural 

restrictions. It related to possibility to keep in memory and to analyze states of molecules by means of 

these molecules themselves. Such assumption leads to inconsistencies (Appendix M). Therefore, the 

possibility to find experimentally inconsistency between Schrodinger evolution and spontaneous 

reduction by help of introspection in an isolate system is also restricted. 

 

   Nevertheless, let's try to find some mental experiments leading to inconsistency between 

Schrodinger evolution and spontaneous reduction.  

 

    1) The first example is related to reversibility of quantum evolution. Suppose we have introduced 

a Hamiltonian capable to reverse quantum evolution of the Cat-box system [29, 30]. Though 

practically it is almost impossible, theoretically no problem exists. If the spontaneous reduction 

happens the process would be nonreversible. If the spontaneous reduction is not present the Cat-box 

system will return to an initial pure state. However, only external observer can make such checkout. 

The Cat cannot make it by introspection because Cat’s memory will be erased after returning in an 

initial state.  

    From the point of view of the external observer, no paradox exists because he does not observe 

spontaneous reduction that really can lead to a paradox. 

      2) The second example is related to necessity of Poincare's return of quantum system to an 

initial state. Suppose the initial state was pure. If spontaneous reduction really exists in the case of Cat 
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introspection, it leads to the mixed state. Then return would be already impossible - the mixed state 

cannot transfer in a pure state according to a Schrodinger equations. Thus, if the Cat has fixed return, it 

would come to inconsistency with spontaneous reduction. But the Cat cannot fix return (in the case of 

quantum mechanics fidelity), because return will erase Cat's memory.  So, there is no paradox.  

  The exterior observer actually can observe this return by measuring an initial and final state of this 

system. But there also no paradox exists, because he does not observe any spontaneous reduction that 

really can lead to a paradox. 

 

 

Figure 18. Poincare’s return close to initial state due to quantum correlations. 

 

     It is worth to note that the inconsistency between spontaneous reduction and Schrodinger 

evolution can be experimentally observable only when the spontaneous reduction is kept in memory of 

the observer and this memory is not erased and not damaged. All experiments described above are not 

covered by this requirement. Thus, these examples clearly show that though the spontaneous reduction 

really can lead to violation of Schrodinger evolution, this violation experimentally is not observed.     

  3)  The third example. Quantum mechanics gives superposition of a live and dead cat in a box. 

Theoretically, an exterior observer can always measure this superposition exactly if it would be one of 

measurement eignfunctions. Such measuring would not destroy superposition, contrary to the case 

when the live and dead cat are eignfunctions of measurement. Having informed the cat about the result 

of measuring we will enter into inconsistency with spontaneous reduction observed by the cat [31, 32]. 

Such argumentation would hold a double error. 

    At first, this experiment is used for verification of Cat’s spontaneous reduction existence when 

the observer is the Cat itself. The external observer does not influence Cat's memory only when the 

spontaneous reduction is not present, and the Cat’s state is superposition of live and dead states. But it 

does influence and can destroy Cat's memory in spontaneous reduction case. So such experiment is not 

legitimate for verification of spontaneous reduction existence. 

So, no contradiction with the past exists. 
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    Secondly, the data transmitted to the Cat is kept in his memory.  Thus this transmission changes 

both the state, and all further evolution of the Cat, i.e. the system can not be considered as isolated in 

the following. So, no contradiction with the future exists.   

   The external observer does not see spontaneous reduction and, hence, does not observe the 

paradox. So, from the external observer’s point of view, such verification is quite possible and 

legitimate. It does not influence the external observer's memory. Moreover, such verification, which 

does not break evolution of the observable system, allows measuring not just an initial and final state 

of system but also all intermediate states. I.e. it implements continuous non-perturbative observation!  

    It ought to be noted that the external observer can observe the superposition of an alive and dead 

cat just theoretically. Practically it is almost impossible. In contrast for small quantum systems, the 

superposition is quite observable. It results in the fact that quantum mechanics is considered usually as 

the theory of small systems. But for small macroscopic (mesoscopic) objects such observation is 

possible too. The large set of particles at low temperatures or some photons states [33] can be an 

example.  

  . 

     7. Solution of paradoxes of Loschmidt and Poincare in classical mechanics. Explanation of 

law of increasing of macroscopic entropy 

 
Let us also consider two cases here – when an observer is included into the observable system,  and 

when he is outside of it.  

    The basic inconsistency of classical statistical mechanics is inconsistency between the law of 

increasing of entropy and reversible classical motion laws. It is expressed by Poincare and Loschmidt 

paradoxes. 

     In case of classical mechanics, unlike quantum mechanics, a more simple case is that when the 

observer is included into the observable system. Poincare's return of the system to an initial state leads 

to memory erasing, similarly to the previous chapter argumentation. It makes Poincare paradox 

experimental observation impossible. The reversion of velocities really leads to entropy decreasing. 

However, the time direction is relative and not absolute. So we should define positive direction of the 

time arrow. It is reasonable to choose the time arrow in the direction of entropy growth. We will define 

such time arrow as the proper time arrow of the system. With respect to this proper time arrow, 

Loschmidt paradox disappears. It ought to be noted that in both paradoxes solutions there is both 

memory erasing in final system state, and entropy growth in direction of proper system time arrow. 

Close to the final state, the direction of proper system time arrow reverses with respect to initial state 

direction. The main reason of impossibility of paradoxes observation is caused by impossibility of 

complete system state knowledge with the help of introspection.  

   For the external observer, the situation is more difficult. Theoretically, interaction between the 

observer and observable system can be made by an arbitrarily small in the classical mechanics. Hence, 

nothing prevents to observe entropy decreasing. In this case directions of the proper time arrow of the 

observer and the observable system are opposite. Is it really possible? Theoretically yes, but practically 

it is almost impossible. Most of real physical systems are intermixing (chaotic) systems. It means that 
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their phase trajectories are exponentially diverges in presence of small noise. Small interaction of the 

observer with the observable system or a surrounding medium with observable system is inevitably 

present almost in all cases. We remind that for chaotic systems the following theorem is true: 

Processes of macroparameters evolution with macroscopic entropy decreasing are strongly 

unstable with respect to small external noise. By contrast to this processes of macroparameters 

evolution with macroscopic entropy growth are stable. 

Therefore, inevitable small interaction leads to destroying of entropy decreasing processes and to 

observer’s and observable system’s proper time arrows synchronization. Hence the system can not be 

considered as isolated, and classical mechanics paradoxes for isolated systems are not relevant. Small 

interaction of a surrounding medium with the observer and with observable system will have the same 

effect, as interaction of the observer with observable system - proper time arrows synchronization for 

all subsystems. In this case the role of the observer is more passive and is natural. 

 

 

Figure 19. Reasons explaining causes of unpredictability in classical mechanics. 

 

 In the works [1, 2, 6, 34] synchronism of all proper time arrows in the surround world is considered 

as big mystery. Why do we never meet processes with entropy decreasing though their probability is 

equal to probability of entropy increasing processes? Attempts are made to find explanation in the 

origin of our Universe
8
 [1, 2, 6, 34]. Nothing of the kind is necessary.  Simple, inevitable, small 

interaction always exists between systems. It leads to visible synchronizing of all proper time arrows. 

          Thus, the trajectories causing entropy decreasing are not stable with respect to small noise 

from the external observer. In the case of quantum mechanics such noise is even theoretically 

inevitable during measuring if we do not know the true initial state of the measured system. State 

                                                 
8
 Why our present low entropy Universe has not been created from Chaos by some time reversal process [1, 2]? 

It would look like some large fluctuation! Why its origin is very low entropy state lead to Big Band? The 

answer is given by Elitzur's paper [35]. There it is shown that the optimal process for desirable low entropy 

states creation there is creation of initial state with much more lower entropy than the desirable one. This 

method was named «the sky lift» by him. It is because of analogy with using sky lift for further descent of the 

mountain. 
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measuring leads to inevitable violation of this measured state. In classical mechanics measuring can be 

made at least theoretically precisely. Therefore we should introduce some small external noise and/or 

initial state errors "manually" in order to explain entropy growth for the observer. 

     In actual measuring such small external noise is always present. The enormous efforts, causing 

environment entropy growth, are necessary to prevent this noise influence. Such environment entropy 

growth is much larger than entropy decreasing obtained by this observable system isolation. Thus, the 

entropy increasing law will be fulfilled again. Here there is an analogy to paradox resolution about 

Maxwell’s Demon [37-38] which uses sorting of molecules for entropy decreasing. Acquiring 

information for sorting leads to entropy increasing much more than correspondent entropy decreasing.  

 

 

 

Figure 20. Synchronization of time arrows. 

 

    Though prevention of small and all-pervading interaction between systems is a very difficult 

problem for macroscopic system, for very small systems it is easily executable. Actually, we can 

observe everywhere small fluctuations which correspond to violations from entropy increasing law.  If 

we neglect a very small friction, reversible processes are easily observable in gravitational astronomy 

too. 

    

   8. Deep analogy between quantum mechanics (QM) and classical statistical mechanics (CМ) 

(see also Appendix N) 
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From the above described reasons it is possible to guess that there is almost full analogy between 

properties and paradoxes of СМ and QM and also between methods of their solution. We will describe 

these analogies in more details.  

 

1) The both mechanics are reversible in time. 

2) For the both mechanics Poincare's theorem of returns is applicable. However, if for СМ almost-

periodic systems are very small class of systems, for QM all systems in finite volume are almost-

periodic. 

3) In СМ there are correlations correspondent to macrostate knowledge and the additional hidden 

microscopic correlations related to knowledge of its "history". In QM two types of correlation are also 

possible: the classical correlations described by density matrix diagonal elements, conserving during 

measuring reduction, and hidden quantum correlations, described by density matrix nondiagonal 

elements, leading to paradoxes. Small external noise from the observer or the environment destroys 

additional correlations in CM and leads to coarsening of phase density function. Similarly in QM, 

entangling of observable system with observer (inevitable interaction during measuring) or entangling 

of observable system with environment (decohernce) lead to vanishing of quantum correlations 

(density matrix nondiagonal elements vanishing) and wave function reduction. 

4) In case of introspection observation of Poincare or Loschmidt returns is impossible because of 

memory erasing. As a result, at introspection observation of additional correlations (in СМ) or 

quantum correlations (in QM) leading to paradoxes is also impossible. 

5)  In QM and СМ it is possible to define two kind of entropy - entropy of ensembles (phase density 

function) and macroscopic entropy. Entropy of ensembles conserves during reversible evolution, 

macroscopic entropy can both increase and decrease. At introspection entropy decrease becomes 

unobservable. For the external observer small interaction of this observer with observable system or 

observable systems with the environment also makes entropy decrease impossible (or very hard-

achievable). Let's try to isolate from an environment noise and to observe some entropy decreasing 

system.  Yet very large entropy increasing is necessary for it. This entropy increasing is much larger 

than entropy decreasing obtained with the help of isolation. Actually, no completely isolated and 

impenetrable cavities exist in our real world, no ideal infinitely light-weighted particles. But small and 

all-pervading interaction does exist. 

6) Process of spontaneous reduction in QM is related to neglecting by quantum correlations and 

transition from a pure state to mixed one, thus, leading to increasing of macroscopic entropy. It is 

interesting that macroscopic entropy increasing can be found by similar way for Boltzmann equation in 

СМ. It is achieved by introduction of “molecular chaos hypothesis”. It is related to neglecting by 

correlations between particles (i.e. their momentums and coordinates are assumed as independent). 

Thus the two particles distribution function is considered as the product of one-particle functions. 

Thus, introduction of spontaneous reduction in the QM equations is very similar to introduction 

entropy increasing law in CM equations. 

  7) Laws of QM are statistical. In QM observation of unknown state inevitably results in changing 

observable system evolution.  The most of systems in СМ are intermixing, so in reality their behavior 

also is casual. It is related, firstly, to small interaction of an observable system with an observer or 
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environment. Secondly, our knowledge of initial state is not full. However, theoretically, for very exact 

accuracy of initial state measuring and full isolation, behavior of the system can be predicted as 

precisely as we want. However, for reaching such accuracy in reality, enormous entropy increasing of 

environment shall be needed. 

8) In both cases paradoxes arise only for macrosystems. Laws of behavior of microsystems are not 

applicable because of small external noise and finite accuracy knowledge of the initial state. The single 

serious difference between QM and СМ is the following. In СМ small, but finite interaction during 

measuring (observation) or small errors of the initial state knowledge should be introduced "manually", 

but in QM it arises naturally because of theoretically inevitable interaction during measuring of 

unknown quantum state
9
. 

 

In conclusion, we come to an unexpected deduction: the paradox of the Schrodinger Cat in QM is 

the quantum analogue of entropy increasing law in СМ.  In QM microsystems are usually investigated, 

and in СМ macrosystems. So these actually equivalent paradoxes possess so different forms. But the 

main sense of them is the same. 

 

                                                 
9
 Very often there are examples of "purely quantum paradoxes", ostensibly not having analogy in the classical 

statistical mechanics. An example is Elitzur - Vaidman paradox [36] about the bomb which can be discovered 

without explosion: 

1) Let the wave function of one photon branches to two possible channels of some devices. In the end these 

channels again unite, and there is an interference of two probability waves. Entering bomb into one of the 

channels will break process of interference and will allow discovering the bomb even if the photon will not 

detonate it. (The photon is capable to detonate the bomb) 

2) The full analogy is the following experiment in СМ. In one of the channels where there is no bomb, we throw 

in a macroscopic beam of many lightweight particles. In other channel where the bomb is present only one 

lightweight particle travels. This particle is not capable to detonate the bomb, but the bomb can throws it back. 

This particle is undetectable macroscopically because of finite sensitivity of devices. But if the beam of 

particles in the end of the channel has unstable dynamics, even presence of one undetectable additional 

particle can strongly change this dynamics (so-called «effect of the butterfly»). It will allow registering a new 

particle which will transit through the second channel if bombs are not present. It is the full analogy between 

QM and СМ paradoxes! 
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Figure 21. Sources of irreversibility and entropy in physics. 

9. Time arrows synchronization/decoherence [88-94]. 

    The follow question can appear. Assume that there exists a process in which the entropy 

decreases. For definiteness, let us take this process to be a spontaneous reconstruction of a house 

(previously destroyed in an earthquake). 

Let us also take a simple example of the gas expanding from a small region of space into a large 

volume. If, after some time, all the velocities are reversed, the gas will end up in the starting small 

volume. If we turn on the camera to take a series of snapshots recording different stages of spontaneous 

house building/ (gas shrinking), we expect that the camera will record this spontaneous process. Why 

will the camera not be able to record it? What exactly will prevent the camera to record these 

snapshots? 

    The answer this question is following:  even a very small interaction between the camera and the 

observed system destroys the inverse entropy decrease process and results in the time arrow directions 

synchronization of the observer and the observed system. (A time arrow direction is defined in the 

direction of the entropy increase.) This very small interaction appears because of light, eliminated by 

the observed object and reflected by the camera (and also because of light eliminated by camera). In 

absence of the camera the role of the observer can play environment, eliminating and reflecting the 

light. (Any process without a observer has no sense. He must appear at some stage of the process. But 

his influence is much smaller than the environment influence.) External noise (interaction) from the 

observer/the environment destroys correlation between molecules of the observed system. It results in 

preventing the inverse process with the entropy decrease. In the quantum mechanics such process is 

defined as "decoherence". The house reconstruction/(the gas shrinking) will be stopped, i.e., that the 



                           

 

 

39 

house will not really be reconstructed/(the gas will not shrink). In contrast the entropy increase 

processes are stable.  

   Decoherence (time arrows synchronization and “entangling”) and relaxation (during the relaxation 

a system achieves its equilibrium) are absolutely different processes! During the relaxation 

macroscpical variables (entropy, temperature, pressure) strongly change to its equilibrium values and 

invisible microscopical correlations between parts of the system increase. During the decoherence   the 

macroscpical variables (entropy, temperature, pressure) are almost constant. Invisible microscopical 

correlations inside the subsystems (environment, observer, observed system) are strongly destroyed, 

but new correlations appear between the subsystems. It is named “entangling” in the quantum 

mechanics. During this process the time arrows synchronization happens also.  Time of the relaxation 

is much larger than time of the decoherence. 

   Let us take a simple example of the gas expanding from a small region of space into a large 

volume. In this entropy-increasing process the time evolution of macroscopic parameters is stable to 

small external perturbations. If, after some time, all the molecular velocities are reversed, the gas will 

end up in the starting small volume; this is true in the absence of any perturbation. This entropy-

decreasing process is clearly unstable and a small external perturbation would trigger a continuous 

entropy growth. Thus the entropy-increasing processes are stable, but the decreasing ones are not. 

   The following example is a citation from Maccone's paper [39, 40]: 

"However, an observer is macroscopic by definition, and all remotely interacting macroscopic 

systems become correlated very rapidly  (e.g. Borel famously calculated that moving a gram of material 

on the star Sirius by 1 m can influence the trajectories of the particles in a gas on earth on a time scale 

of s  [41])" 

      But no problem exists to reverse together the observer (the camera) and the observed 

system. Because of the Poincare return theorem for closed system (including the observer and the 

observed system) it must happen automatically after very large time. But the memory erasing of 

observer doesn't allow register this process. 

       The most real systems are chaotic – a weak perturbation may lead to an exponential divergence 

of trajectories, and also there is always a non-negligible interaction between an observed system and an 

observer/environment.  But in principle both in the quantum mechanics and in the classical 

mechanics we can make unperturbative observation of the entropy decrease process. The good example 

of such mesoscopic device is a quantum computer: no entropy increase law exists for such system. This 

device is very well isolated from the environment and the observer. But in practice unperturbative 

observation is almost impossible for macroscopical systems. We can conclude that the entropy increase 

law is FAPP (for all practical purposes) law.  

   Let us consider time arrows synchronization for two non-interacting (before some initial moment) 

systems. The systems had initially the opposite time arrows. It means that there exist two non-

interacting systems, such that in one of them time flows (i.e., entropy increases) in one direction, while 

in the other time flows in another (opposite) direction. However, when they come into an interaction 

with each other, then one of them (the "stronger" one) will drag the other ("weaker") one to flow in his 

("stronger") direction, so that eventually they will both have time flowing in the same direction. 
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    What exactly it means to be "stronger?  Is it something that increases with the number of degrees 

of freedom of the system? It is not correct. "Stronger" or "weaker" does not depend on the number of 

degrees of freedom of the systems. For the first system the interaction appears in its future after initial 

moment (In initial moment the systems have opposite time arrows). For the second system the 

interaction was in its past. So situation is not symmetric in time and the first system is always 

"stronger". It happens because of the instability of the entropy decrease processes and stability of the 

entropy increase processes described above.  

   Indeed, suppose we have two initially isolated vessels with gas. In the first one gas expends (the 

entropy increase). In the second one gas shrinks (the entropy decrease).  

   In the first vessel the gas expends from small volume in the center of a vessel. Velocities of 

molecules are directed from the center of the vessel to its boundary. It is physically clear that a small 

perturbation of the velocities can not stop gas expending. Indeed, velocities after a random small 

perturbation will continue to be directed from the center of the vessel to its boundary. The noise can 

even increase expending. So, the expending process is stable.  

   In the second vessel gas shrinks from the full volume of a vessel to its center. Velocities of all 

molecules are directed to the center of the vessel. It is physically clear that a small random perturbation 

of the velocities can easily stop gas shrinking. Indeed, the velocities even after a small perturbation will 

not be directed to center of vessel. Thus, the shrinking process is stopped. So we can conclude that the 

shrinking process is unstable. This shrinking process can be obtained by reversing gas expanding. If we 

reverse the molecules velocities of the expending gas before the collisions of the molecules with each 

other and the vessel boundary such instability is linear and not strong. But for reversing after collisions 

this instability is exponential and much stronger. 

   Both directions of time have equal roles. But a small random noisy interaction breaks this 

symmetry for the described above two systems because of the instability of the entropy decrease 

processes. The symmetry of time exists only for full system including the two defined above 

subsystems. But the time arrows of the interacting subsystems must be the same.   

   In reality, the interaction with infinite time can be replaced by large finite time T, which is chosen 

to be much smaller than Poincare return time. So in the first system we have the interaction during [0, 

T] and in the second one during [-T, 0]. Can our argument be still applied? Instead of the asymmetry of 

the forces in this case we obtain a asymmetry of the initial conditions: At initial moment 0 for the first 

coordinate system [0,T]  the two vessels have the different eigen time arrows. However, at initial 

moment -T for the second coordinate system [-T,0]  the two vessels have the same eigen time arrows in 

negative direction. Only if T is exactly equal to Poincare return time the situation will be indeed 

symmetric. For such situation the two eigen time arrows is also different in moment T, but everyone is 

opposite its initial direction in time 0. Again the “stronger” system has the interacting forces in its 

future with respect to its eigen time arrow.  

   This theory can explain the same direction of entropy growth in all parts of Universe. But it can 

not explain a low entropy initial condition of the Universe. It is probably a result of the anthropic 

principle [42].  
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10. The law of entropy increase and "synchronization of time arrows"/decoherence in the 

gravitation theory. 

       In Einstein’s general relativity theory motion is reversible similarly to the classical mechanics. 

But an important difference also exists between the general relativity and the classical mechanics. The 

general relativity is ambiguous theory. Indeed, in the general relativity two various initial states can 

give infinitesimally close states after finite time interval. It happens, for example, during formation of a 

black hole as a result of a collapse. Let us consider the inverse process describing a white hole. In this 

process the infinitesimally close initial states after the finite time interval can give the different final 

states. It means, that an observer/environment can affect considerably on its evolution during finite 

time interval even when the observer/environment infinitesimally weakly interacts with the white hole. 

As a result of this property the law of the entropy increase turns to be an exact law, but not FAPP (for 

all practical purposes). So the entropy becomes fundamental concept. Really, there is such fundamental 

concept, as the entropy of a black hole. Also it is possible to explain existence of this entropy by the 

perturbation created by the observer. This perturbation   may be now even infinitesimal weak unlike 

the classical mechanics. During the formation of the black hole the entropy increases. Time reversion 

leads to appearance of the white hole and the entropy decrease.  

   The white hole cannot exist in reality because of the entropy decrease. The entropy decrease is 

prohibited in the general relativity because of the same reasons that it is prohibited in the classical 

mechanics. It is instability of the entropy decrease processes which much stronger in the general 

relativity, than in the classical mechanics. This instability results in synchronization of the eigen time 

arrows of the white hole and the observer/environment. The direction of the eigen time arrow of the 

white hole changes on opposite one, coinciding with the eigen time arrow of the observer/environment. 

The white hole transforms to the black hole. 

    Here is also the well-known black hole information paradox [43]: the information (which in 

classical and a quantum mechanics is conserved) disappears in a black hole for ever. It would seem that 

there is no problem: probably the information is stored inside of the black hole in some form. However 

chaotic Hawking radiation makes explicit this process of information losses: the black hole evaporates, 

but the information is not recovered.  

 The Hawking radiation concerns to semiclassical gravitation.  However the paradox can be 

formulated also within the frameworks of the general relativity theory. The spherical black hole can be 

“changed” into a white hole at some moment.[95] Thus process is converted in time. But the 

information can not be recovered because of the ambiguity (the infinitely strong instability) of the 

evolution of the white hole. 

  Usually only two solutions for this problem are considered. Or the information really disappears, or 

because of interior correlations of the Hawking radiation (or exact reversion of the black hole process 

after its transmutation to the white hole) the information is conserved. But, most likely, the third 

solution is true. Because of inevitable influence of the observer/environment it is impossible to 

distinguish these two situations experimentally! But if it is impossible to check experimentally, it is not 

a subject of the science  

   Both for the general relativity theory and for semiclassical gravitation the paradox can be resolved 

by means of influence of the observer/environment. Really, let us suppose that the Hawking radiation 
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is correlated, not chaotic (or the white hole would be inversed to the black hole exactly). As the 

infinitesimal influence of the observer/environment leads to the inevitable losses of these correlations 

(and the correspondent information) during the finite time interval. It is senseless to include the 

observer into the described system: the complete self-description and introspection is not impossible. 

The information conservation law can not be checked experimentally for such a case even if it is really 

correct.  

  We have now no general theory of quantum gravitation. However for a special case of a 5-

dimentional anti-de-Sitter space this paradox is considered by many scientists to be resolved. The 

information is supposed to be conserved, because a hypothesis about AdS/CFT dualities, i.e. 

hypotheses that quantum gravitation in the 5-dimensional anti-de-Sitter space (that is with the negative 

cosmological term) is equivalent mathematically to a conformal field theory on a 4-surface of this 

world. It was checked in some special cases, but not proved yet in a general case. Suppose that if this 

hypothesis is really true, as it automatically solves the information problem. The fact of the matter is 

that the conformal field theory is unitary. If it is really dual to quantum gravitation then the 

corresponding quantum gravitation theory is unitary too. So, the information in this case is not lost. But 

we suppose, that it not correct. The process of the formation of a black hole and its subsequent 

evaporation happens on all surface of the anti-de-Sitter space (described by the conformal quantum 

theory). It includes as well the observer/environment. But the observer can not precisely know an initial 

state and can not analyze the system behavior because he is a part of this system! So his influence on 

the system can not be neglected. Thus, the experimental verification of the information paradox again 

becomes impossible! 

    Let's consider from the point of view of the entropy increase law such a paradoxical object of the 

general relativity theory, as a wormhole [44]. We will consider Morris-Thorne wormhole [45]. By a 

very simple procedure (we put one of the wormhole mouths on a spaceship, then the spaceship moves 

with relativistic velocity over closed loop and returns the mouth to its initial place) the wormhole 

traversing space can be transformed into one traversing time. After this transform the wormhole can be 

used as a time machine, leading to the well-known paradox of a grandfather. How this paradox can be 

resolved?   

   For macroscopic wormholes the solution can be found by means of entropy increase law. The 

realization of this law is ensured by the instability of   entropy decrease processes, resulting in time 

arrows synchronization. 

   Really, the wormhole traversing space does not lead to the paradox. If an object go into one mouth 

at some time moment then it go out from the other mouth after some later time moment. Thus the 

object travels from a initial high-order low entropy environment to the future low-order high entropy 

environment. During the trip along the wormhole the object entropy also increases. Thus, the directions 

of the time arrows of the object and the environment are the same. The same conclusions are correct 

for travelling from the past to the futre into a wormhole traversing time   

  However for travelling from the future to the past the directions of the time arrows of the object 

and the environment will be already opposite. Really, the object travels from the initial low-order high 

entropy environment to the future high-order low entropy environment. But its entropy increases and 

does not decrease! As we spoke earlier, such process is unstable and will be prevented or forcedly 



                           

 

 

43 

converted by a process of synchronization of the time arrows. It must happen at the moment that 

moving mouth of wormhole returns to its initial state.  

  "Free will" allows us to initiate only irreversible processes with the entropy increase, but not with 

its decrease. Thus, we can not send the object from the future to the past. Process of synchronization of 

the time arrows (and the correspondent entropy growth law) forbids the initial conditions which are 

necessary for the travelling of the macroscopic object to the past (and realization of conditions for the 

paradox of a grandfather).  

  In paper [46] it is demonstrated, that for the thermodynamic          time arrow it is impossible to 

have identical orientation with the coordinate time arrow over closed timelike curve because of the 

entropy growth law. The described here process of synchronization of the time arrows (concerned with 

infinitely large instability and ambiguity of the entropy decrease processes) is that physical mechanism 

which actually ensures both this impossibility and realization of the entropy growth law over the same 

thermodynamic time arrow. 

      For microscopic wormholes a situation is absolutely different. If initial conditions are 

compatible to travelling to the past over a wormhole, there are no reasons which can prevent it. If some 

small (even infinitesimally small!)  perturbation of initial conditions leads to an inconsistency with the 

wormhole existence, the wormhole can be always easily destroyed [47]. Really, there appears the 

mentioned above property of the general relativity: infinitely large instability (ambiguity). It means that 

the infinitesimal perturbation of initial conditions can result in finite changing the final state during 

finite time! 

    However, it is not a solution of the grandfather paradox which is a macroscopic, not microscopic 

phenomenon. Really, suppose that there are two processes with opposite time arrow directions:  a 

cosmonaut and the surrounding Universe. The cosmonaut travels over a wormhole from the Universe's 

future to the Universe's past. But for the eigen time arrow direction of the cosmonaut it will be 

travelling from its past in its future. For the general relativity theory the situation described above is 

impossible even in principle (in contrast with the classical mechanics): even infinitesimal interaction 

leads to synchronization of time arrow directions because of infinitely large instability (ambiguity) of 

processes with entropy decrease (in this case "process with entropy decrease" is the cosmonaut 

travelling from the future in the past). This synchronization of the time arrow directions can be 

accompanied both destroying the wormholes [47], and conservation of the wormhole and a 

modification of only initial conditions [46]. But actually the entropy growth law (and the corresponding 

synchronization of time arrow directions ) does not allow even occurrence of such situations with an 

inconsistency between macroscopic initial conditions and a initially defined (unchanging and 

invariable) macroscopical space-time topology (including a set of wormholes) [46] Let us formulate a 

final conclusion: for macroscopic processes the infinitely large instability (ambiguity) of processes 

with the entropy decrease (and the correspondent synchronization of time arrow directions)  does 

impossible occurrence of initial conditions incompatible with existence of the given wormholes.  This 

instability also prevents both wormholes destroying, and traveling macroscopic objects to the past 

(resulting in "the grandfather paradox”)    Let us conclude. We see a wonderful situation. The same 

reasons (which allowed us to resolve the reduction paradox, the Loshmidt and Poincare paradoxes) 
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allow also resolve the information paradox of black holes and the grandfather paradox for wormholes. 

It is remarkable universality! 

 

 

11. Ideal and Observable Dynamics 

 

11.1 Definition of Ideal and Observable Dynamics. Why is Observable Dynamics necessary? 

 
We see that the exact equations of quantum and classical mechanics describe IDEAL dynamics 

which is reversible and lead to Poincare's returns. On the other hand, the equations of physics describe 

OBSERVABLE dynamics, for example, of a hydrodynamic equation of viscous fluid, Boltzmann 

equation in thermodynamics, the law of growth of entropy in the isolated systems (master equations) - 

are nonreversible and are excluded by Poincare's returns to an initial state.  

     

        Let's give definition of Observable and Ideal Dynamics, and also explain necessity of 

introduction of Observable Dynamics. Ideal Dynamics is described by exact laws of quantum or 

classical mechanics. Why do we use the word "ideal" for our definition? Because really observed laws 

(entropy increase law and spontaneous reduction) contradict to Ideal Dynamics laws. This violation of 

Ideal Dynamics is explained or by interaction of measured systems with environment or/and an 

observer, or by limits of self-knowledge of the system obtained by introspection in case of both the 

external observer and the environment is included in the considered system. So real systems are either 

open or do not have full description, i.e. ideal dynamics is impossible.  

      Can we conclude that using physics laws is impossible in these cases? Absolutely no! The most 

of such systems can be described by equations of exact (or probability) dynamics, despite their non-

isolation or incompleteness. We define this dynamics as Observable Dynamics. The most of the 

equations in physics named master equations (such as, for example, as hydrodynamic equations of 

viscous fluid, Boltzmann equation in thermodynamics, the law of growth of entropy for isolated 

systems) are the equations of Observable Dynamics. 

    In order to possess the property described above, Observable Dynamics should meet certain 

requirements. It cannot be operated with the full set of microvariables. In Observable Dynamics we 

use just much smaller number of macrovariables which are some functions of microvariables. So 

Observable Dynamics is much more stable with respect to initial condition errors and to external noise. 

Really, the microstate change does not lead inevitably to a macrostate change because one macrostate 

is correspondent to large set of microstates. For gas, for example, macrovariables are density, pressure, 

temperature and entropy. Microvariables are velocities and coordinates of all its molecules. 

    How can the Observable Dynamics be derived from the Ideal Dynamics? It is derived either by 

introduction in the Ideal Dynamics of small but finite external noise or by introduction of errors into 

initial state. These noise or initial state errors always exist in real experiments, but don’t occur in ideal 
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models. What is the meaning of small but finite noise? Noise or errors should be large enough to 

prevent non-observed appearances (inverse processes with entropy decreasing or Poincare's returns). 

On the other hand, noise or initial state errors should be small enough to keep dynamics of 

macroparameters to be unchanged for processes with entropy growth.  

 

Figure 22.  Three types of Dynamics. 

 

 

   Observable Dynamics for processes with entropy growth yields results coinciding with Ideal 

Dynamics. However, the inverse processes going with entropy decreasing and Poincare's returns are 

impossible in Observable Dynamics.   

    The possibility of introduction of Observable Dynamics is related to the above specified 

stability of the processes going with entropy growth with respect to initial conditions errors and 

to external noise. On the other hand, the entropy decreasing processes, and Poincare's returns are 

unstable even for small noise and small initial conditions errors. But these appearances also are not 

observed in real experiments.  

    What it is the reason of entropy growth processes stability in Observable Dynamics with respect 

to noise (under appropriate selection of macrovariables)? Two main reasons were defined by 

Schrodinger [48].  

      The first one has been already described above. Actually, macrostate is correspondent to 

enormous number of molecules states. Though external noise can strongly change a state of every 

single molecule the full contribution of all molecules to macrostate remains unchanged. It is related to 

“law of large numbers” in the probability theory [16]. An example of correspondent  law can be 

macroscopic fluid or gas motion laws.  



                           

 

 

46 

       The second reason is related to discretization of states in quantum mechanics. As different 

quantum states are discrete and have strongly different energy, small noise cannot change them. It is 

the reason for stability of a chemical bond and allows considering macromolecule thermodynamics.  

    What for is it necessary to use Observed Dynamics, instead of Ideal dynamics if the two yield to 

identical results in all important observational situations related to entropy growth? Because 

Observable Dynamics description is much simpler than that of Ideal Dynamics. Observable 

Dynamics throws away unobservable processes (like inverse processes with decrease of entropy or 

Poincare returns) out of consideration, uses smaller number of variables and simpler equations. 

Besides, it allows abstracting away from small external noise or incompleteness of initial condition of 

the system, allowing making description of the system exact or probable.  

   We know that the true theory is Ideal Dynamics. Observable Dynamics yields different results.  

Whether it is possible to discover experimentally this difference between these two theories, provided 

that Ideal Dynamics is really true? Theory can be considered as either correct or not correct just if some 

real experiment can reject the theory. Such theory is named falsifiable in sense of Karl Popper [49]. 

Suppose that Ideal Dynamics is correct. Is Observable Dynamics falsifiable in the sense defined above?  

    For the complete physical system including the observer, observable system and a 

surrounding medium Observable Dynamics is not falsifiable in Popper's sense (under condition 

of fidelity of Ideal Dynamics). I.e. the difference between Ideal and Observable Dynamics in this case 

cannot be observed in experiment
10

. 

      For the system being only measured, without inclusion of an observer and an environment, 

Observable Dynamics basically is falsifiable. For this purpose it is necessary to exclude any influence 

from the surrounding medium or observer of the measured system, to prepare some known initial state, 

to measure final one and then to compare the obtained result with the theory. There appears temptation 

to ask: May be some Observable, but not Ideal Dynamics is really true?  [1, 2, 8] For example, suppose 

that the spontaneous reduction really occurs for macroscopic systems which are large enough. I.e., the 

spontaneous reduction is observed not just by introspection, but for the external observer at the full 

isolation of a macrosystem from environment noise too. However, in the case of isolated systems being 

not large, when Ideal Dynamics can be observationally checked, it always appears to be really true.
11

 

                                                 
10

 Nevertheless, it can be useful. Some calculation can be made easier in its framework. It can be 

simpler for understanding. For example, in the framework of Galileo related to the sun we can 

calculate planets dynamics much easier and much more precisely than in that of Ptolemy related to the 

Earth. Although, principally we may choose any one. Accordingly, the selection between «the Earth rotates 

around the Sun» and «the Sun rotates around the Earth» remains free and arbitrary. It is defined only by 

beauty of description and our convenience. 

   Similarly, in mathematical science the selection of some definitions and axioms is bounded only by our 

convenience and the requirement of axioms consistency. The theory explaining how to make selection is absent 

(unlike Göde’s theorem of incompleteness). Usually, arguments of "beauty" and theorems "generality‖ are 

used to explain some choice. However, these things need more exact definitions. [50] 

 

11
 Such experiments do exist and are performed for systems of the intermediate size between macro and micro, 

so-called mesoscopic systems. All these experiments confirm Ideal, not Observable Dynamics. In these 
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    However, for macroscopic systems exclusion of any perturbation from surrounding medium or 

observer on measured system is a very difficult problem, so practical unfalsifiability of Observable 

Dynamics exists. I.e. theoretically it is possible to reject it, but in real experiment it is very difficult to 

make it. 

      Let's make here very important note. Some cases are possible when Observable Dynamics 

can not be formulated correctly. So the system stays unpredictable because of non-isolation or initial 

state incompleteness. It is the case of the Unpredictable Dynamics examined in the following chapter.  

 

11.2 What is the selection of Observable Dynamics macroscopic variables restricted by?  

 

It is of great importance that the selection of macroparameters cannot be arbitrary. Observable 

Dynamics should lead to entropy increasing law and irreversibility. For correct macrovariables 

definition entropy increasing processes should be stable and equivalent both for Ideal and for 

Observable Dynamics. On the contrary, the entropy decreasing processes should be unstable in Ideal 

Dynamics and impossible in Observable Dynamics. This requirement superimposes serious restrictions 

on selection of possible macroscopic states. So in classical statistical mechanics set of microstates, 

corresponding to some macrostate, look like a compact, convex drop in phase space. 

This macrostate and its entropy increasing dynamics are stable with respect to small external noise. 

Let's consider set of the phase space points corresponding to the spreaded phase drop with set of 

narrow branches ("sleeves") and reverse velocities of all molecules.  Such ensemble can not be 

correspondent to any macrostate, although the ensemble is corresponding to initial states of processes 

with entropy decrease. The impossibility of the correspondent macrostate is explained by instability of 

such set with respect to small noise. By the same reason it is impossible to select microparameters, i.e. 

velocities and co-ordinates of all molecules, for system decryption (even as some limiting case). In 

chaotic system such microstate is strongly unstable. Certainly, additional reason is also the enormous 

number of such parameters. 

                                                                                                                                                                       

experiments the quantum interference is observed (in the absence of a spontaneous reduction) and there are 

entropy fluctuations. [3, 8]. 

However, for really large macroscopic systems similar experiments will not be possible in the foreseeable 

future. In the fundamental physics the similar situation exists for String Theories and Great Unifications. 

Experiment which can confirm or reject them will not be possible in the foreseeable future except for some 

unexpected miracle. But in the Einstein theory of gravitation which is checked up precisely only for not too 

large gravitation forces, the situation is similar. (We will remind here, for example, mysterious dark substance 

and energy, and also new gravitation theories of Milgrom [51] and Logunov [52-53]). 
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Figure 23. Possible a) and impossible b) distributions for macrostate. 

 

    Similarly, in QM there is a problem: for example, why for the basic macrostates of the 

Schrodinger cat do we choose two basic states defined by live or dead cat, but not two basic stats 

defined by their difference and the sum [54]? From point of view of QM it is also possible. The reason 

in that an alive or dead cat is stable with respect to environment perturbations. Contrarily, their sum or 

difference are entangled with an environment and transfer in a mixture of an alive and dead cat during 

very short time. We named this process as decoherence previously. It finishes much faster than all 

other thermodynamic relaxational processes [20, 23-25]. I.e. selection of two states to be exactly the 

alive or dead cat is dictated by necessity of stability to external noise. 

     Which property of the Ideal Dynamics equations leads to a priority of such states? This property 

is locality of interaction. Only molecules close in space are strongly interacting. Really, states of live 

and dead cat are strongly separated in space. So their superposition (sum or difference) is easily 

reduced to their mixture by interaction with surround medium molecules. Definition of such priority 

macroscopic states (named pointer states) in case of a quantum mechanics is featured in Zurek 

papers [21, 22]. Suppose that interaction between molecules would be defined not by closeness of 

molecules positions but by closeness of its momentums, for example. So in this case the priority 

macroscopic states (pointer states) would be absolutely different. 

  For system closed to thermodynamic equilibrium priority macroscopic states (pointer states) 

correspond to energy eigenfunctions. In energy representation at thermodynamic equilibrium a density 

matrix is diagonal. 

  Let's mention here that the selection, both macrovariables set and correspondent Observable 

Dynamics equations, is ambiguous. There is a large set of possible Observable Dynamicses. As a 

matter of fact, all thermodynamics master equations (for example, hydrodynamic equations of viscous 

fluid, Boltzmann equation in thermodynamics, the entropy growth law in the isolated systems) are 

Observable Dynamics equations. Various Observed Dynamics differ by their degree of 

«macroscopicity», and by choice of a proper macrovariables set. 

   Let consider an ensemble which is in equilibrium with a thermostat. in QM such ensemble is 

represented by energy representation of density matrix. Its nondiagonal elements, corresponding to 

correlations, are zero. Similarly, in the CM, in equilibrium no correlations between the molecules exist. 

Two kinds of nonequilibrium exist. The first one is defined by macroscopic correlations of 

macroparameters. They are expressed in QM by diagonal elements, with the values different from 

equilibrium, for density matrix in energy representation. These correlations disappear during process 
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named as relaxation to equilibrium state. The second one defined by microscopic correlations (It is 

quantum correlations in QM or additional unstable correlations in СМ). Quantum correlations 

correspond to nonzero nondiagonal elements of density matrix in energy representation. These 

microscopic correlations are much more unstable and much faster damp than macroscopic ones. 

Process of their vanishing is named above as decoherence. Decoherence time is much less than 

relaxation time. 

 

11.3 Two main methods for Observable Dynamics (Master equations) deriving. 

  
   Let's consider methods of Observable Dynamics deriving. According to two principal causes 

leading to necessity of Observable Dynamics application (i.e. external noise for external observer or 

incompleteness of system state knowledge for introspection), we can divide all methods of deriving of 

Observable Dynamics into two groups.  

   The first method is related to introduction of small uncontrollable noise from an external large 

thermostat (for example, the vacuum is thermostat with zero temperature). [20] This noise destroys the 

additional microscopic correlations leading to returns and reversibility. 

   The second method is related to incompleteness of full system state knowledge for introspection. 

It allows implementing coarsening ("spreading") of the function featuring system states [6, 13] 

(Appendix K). For СМ such function is the phase density function, for QM it is a density matrix. If we 

consider CM case coarsening is flattening (averaging) phase density function in a neighborhood of 

each point over some time period. Between flattening evolution is featured by the usual equations of 

Ideal Dynamics. For QM similar procedure is related to a periodic reduction of a wave function [18] 

and Schrodinger equations uses between reductions. Similar methods of coarsening destroy the 

additional correlations leading to returns and convertibility. As we already above scored above, these 

correlations experimentally are not observed for an introspection case.  

   Observable dynamics (at introspection) should feature behavior of the system (with entropy 

growth) and should produce results coinciding with Ideal Dynamics, just during some finite time 

interval. This time is much smaller than Poincare return time. Indeed, the system cannot be observed 

experimentally during larger time interval because of observer memory erasing at returns. 

 

11.4 Solution of Zeno paradox from the point of view of Observable Dynamics. Exponential 

particle decay is a law of Observed instead of Ideal Dynamics. 

 

Due to necessity of Observable Dynamics concept, we can remind the above mentioned quantum 

Zeno paradox. Here we give solution of the second part of this paradox (about non-exponential decay) 

within framework of Observable Dynamics. 

      Let choose a number of undecayed particles N (with a small possible error) which is the 

measured macroparameter. During the initial moment t0 there were N0 undecayed particles. Ideal 

quantum dynamics of the further decay is not exponential. But quantum measuring of decay inevitably 
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imports perturbations to Ideal dynamics, doing its inapplicable. We can reduce perturbations imported 

by measuring, by increasing intervals between measurings. The time interval between measurings 

(reductions) on the one hand should be large enough in order not to influence essentially dynamics of 

decay. (∆t>> ћ / ∆E where ∆t - between reductions, ћ a-constant lath, ∆E - an difference of energies 

between states the broken up and not broken up particles) On the other hand, the time interval must be 

less than an average lifetime of the decayed particle. (ћ / ∆E <<∆t <τ, where η - a medial lifetime of 

decayed particle). The full time of decay process observation should be much less than Poincare’s 

return time. Indeed, for isolated finite volume systems, including the observer, such returns are not 

observed because of observer memory erasing. (n ∙∆ t <<Treturn where n - number of observations 

[reductions], Treturn - Poincare's return time) Suppose that time interval between measurings and full 

time of observation are chosen correctly, i.e. satisfy all these requirements. For such case the law of 

decay is already strictly exponential and does not depend on concrete exact value of the chosen time 

interval between measurings (reductions). This exponential law of decay (N=N0∙exp (-(t-t0) / τ)) is 

already the law of Observable, but not Ideal dynamics, according to the Observable Dynamics 

definition. 

 

11.5 Examples of various methods of deriving Observed Dynamics by help of «coarsening»: 

Boltzmann equation and Prigogine's New Dynamics. 

             

         An example of Observable Dynamics is Boltzmann equation [5, 6]. Coarsening ("spreading") 

of phase density function (Appendix K) is produced over two stages. Over the first one, the phase 

density function is replaced by one particle function. It corresponds to the phase density function 

averaging over all particles except for one. The equation for a one-particle function is a reversible 

equation of Ideal Dynamics and depends on a two-particle function. The equation of Observable 

Dynamics is obtained by the next coarsening step. «Molecular chaos hypothesis» is introduced. It 

means that correlations between any two particles assume to be zero, so two-partial function is 

replaced by the product of two one-particle functions. Substituting such two-partial function in the 

equation described above we come to nonreversible and non-linear Boltzmann equation. It is very 

similar to QM reduction, when all correlations between possible measuring results (that is to say, 

nondiagonal density matrix elements) are forced to be zero.  

          As one more example of Observable dynamics deriving is a coarsening method used in 

Prigogine’s «New Dynamics» [14, 55], (Appendix L). It is a very wonderful method. Both coarsening 

("spreading") procedure and equations of motion (obtained by simple substitution of inverse to 

coarsened function in the equations of Ideal Dynamics) are linear. In СМ non-isotropic coarsening of 

phase density function is used. As described above, for chaotic systems in a neighborhood of each 

phase space point there is such direction that trajectories diverge exponentially along (a spreading 

direction). Also there is a direction that trajectories converge exponentially along (a shrinking 

direction). Just along shrinking direction coarsening ("spreading") of phase function is yielded. 

   Let's consider a macroscopic state corresponding to some compact, convex «phase drop». This 

«phase drop», spreading on a phase space, gives many "branches". The shrinking direction is 
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perpendicular to these "branches". Therefore function coarsening along them leads to increasing «phase 

drop» square, and, correspondingly, to increasing of microstates number and entropy.  

      Now we will consider an inverse process. The initial state is described by set of phase space 

points gotten from final state of direct process («phase drop» spreading) by reversion of all molecules 

velocities. Velocities reversion does not change the spreaded «phase drop» shape. Shrinking direction 

becomes not perpendicular but parallel to its "branches". Therefore, for this case coarsening along 

spreading direction almost does not change «phase drop» square. Accordingly, the number of 

microstates and entropy also do not vary almost in contrast with magnification of entropy spread «a 

phase drop» at direct process.  

    Thus, non-isotropic coarsening breaks time direction symmetry. Consequently, the 

correspondent equations appear nonreversible.   

 

 

Figure 24. Direct process with macroscopic entropy increasing before coarsening a) and after 

coarsening b). Inverse process before coarsening c) and after coarsening d). Direction of shrinkage are 

denoted. Anisotropic coarsening is produced along direction of shrinkage in Prigogine “New 

Dynamics”. 

 

 

 

Let's consider «New Dynamics» for quantum systems. Similar linear non-isotropic coarsening 

procedure can be yielded also in QM case, but only for infinitely large quantum systems (the infinite 
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volume or the infinite number of particles). Finite quantum systems with a finite number of particles 

are almost-periodic, and have a finite return time. For such cases «New Dynamics» is not applicable
12

. 

   Prigogine suggests considering all real quantum systems as infinitely large. The solution, however, 

can be much easier. Observable Dynamics has sense just during time much less than return time. 

System cannot be observed experimentally during large time interval because of memory erasing at 

returns during introspection. But for small time intervals, large volume systems behaviors in a 

thermodynamic limit are very similar to infinite systems behavior. The thermodynamic limit is a limit 

when system volume moves to infinity, but the ratio of particles number to full system volume remains 

constant. If we have a system, for which the thermodynamic limit does not exist at all (for example, the 

macromolecule) it can be considered as surrounded by environment for which such limit does exist. All 

these methods allow us to use the equations of “New Dynamics” also for finite QM systems.  

     «New Dynamics» is often subjected to criticism [34]. The basic argument against this theory is 

the following. "We can explain all paradoxes and problems of QM/CM without this «New 

Dynamics»". It is really true, and we indeed have done it in this paper. So, these critics conclude, «New 

Dynamics» is not necessary and redundant! But we must consider «New Dynamics» not as replacement 

of QM/CM (that, unfortunately, Prigogine really did), but just as one of the useful and simple form of 

its Observable Dynamics. It allows us to describe physical systems by simpler and irreversible laws, 

excepting unobservable experimentally reversibility and returns. It is its real and big advantage.  

     Let's consider now a situation when it is not possible to find any Observable Dynamics. This case 

was defined above as Unpredictable Dynamics. 

 

12. Unpredictable Dynamics 

 

It is not always when Ideal Dynamics, broken by exterior noise (or by incompleteness at 

introspection), can be replaced by predictable Observable Dynamics. For some systems its dynamics 

becomes unpredictable in principle. So we define dynamics of such system as Unpredictable 

Dynamics. As follows from the definition, for such systems it is impossible to introduce 

macroparameters typical of Observable Dynamics and to predict their behavior. Their dynamics is not 

featured and not predicted by scientific methods. Thus, the science itself puts boundaries of its 

applicability.  

    We do not doubt about fidelity and universality of basic laws of physics. But the impossibility of 

full knowledge of (system states)/(system dynamics laws) exists, because of interaction with the 

observer/environment or incompleteness at introspection. It makes impossible full experimental 

verification of these basic physical laws in some cases. It gives us some freedom to change these laws, 

without any inconsistency with experiment. When these modifications lead to predicted dynamics of 

system it is named as Observable Dynamics. For the other case when any predicted dynamics is not 

possible, it is already named as Unpredictable Dynamics. 

Let's give some examples of Unpredictable Dynamics. 

                                                 
12

 Also New Dynamics is not applicable to almost-periodic systems of CM. However, the most of real CM systems is systems 

with intermixing (chaotic). Therefore for СМ this problem is less important. 
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1) Phase transition or bifurcation points.  It is a place or point of branching or forking of a single 

macroscopic state, featured by Observable Dynamics, into some set of possible macroscopic states. 

This branching occurs by changing some regulated external parameter or by time evolution. In these 

points Observable Dynamics loses the unambiguity.  There are huge macroscopic fluctuations and 

using macroparameters becomes senseless. Evolution also becomes unpredictable in these points, i.e. 

there is Unpredictable Dynamics. 

2) In the modern cosmological models there are additional appearances, except for appearances 

already featured above. They are related to losses of the information and correspondent incompleteness 

of system state knowledge. It is Black Hole or unobservable Universe space existing out of observer 

light cone.  

3) Case of uncontrollable unstable microscopic quantum correlations for system isolated from 

decoherence of environment.  Suppose that some observer fixes the initial state of quantum system. 

He can predict and measure any future system state providing no interaction between observed system 

and environment or observer exists before this measurement. Let us consider another external observer 

who doesn’t know the initial system state. Unlike for the first observer, system behavior is 

unpredictable for him principally. Really, any attempt of the second observer to measure system state 

unpredictably destroys system quantum correlations and correspondent evolution.   I.e. from the point 

of view of the second observer there is Unpredictable Dynamics. Well-known examples of such 

systems are quantum computers and quantum cryptographic transmitting systems [23-25]. 

 

 

 

Figure 25. Quantum computer. 

 

   Quantum computer is unpredictable for any observer who does not know its state in the beginning 

of calculations. Any attempt of such observer to measure intermediate state of quantum computer 

during calculation destroys calculation process in unpredictable way. Its other important property is 

high parallelism of calculation. It is a consequence of QM laws linearity. Initial state can be chosen as 

the sum of many possible initial states of “quantum bits of the information”. Because of QM laws 

linearity all components of this sum can evolve in independent way. This parallelism allows solving 
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very quickly many important problems which usual computer can not solves over real time. It gives 

rise to large hopefulness about future practical use of quantum computers. 

 

 

Figure 26. Quantum encoding and decoding. (Fig. from [102]) 

 

   Quantum cryptographic transmitting systems use property of the unpredictability and 

unobservability of “messages” that can not be read during transmitting by any external observer. 

Really, these “messages” are usual quantum systems featured by quantum laws and quantum 

correlations. An external observer which has no information about its initial states and try make 

measuring (reading) of "message" over transmission inevitably destroy this transmission. Thus, 

message interception appears principally impossible under physics laws.     

    It should be emphasized, contrary to the widespread opinion, that both quantum computers and 

quantum cryptography [23-25] have classical analogues. Really, in classical systems, unlike in 

quantum systems measuring can be made precisely in principle without any measured state distorting. 

However, in classical chaotic systems as well there are the uncontrollable and unstable microscopic 

additional correlations resulting in reversibility and Poincare's returns. Introducing “by hands” some 

small finite perturbation or initial state errors destroys these correlations and erases this principal 

difference between classical and quantum system behavior. Such small external noise from 

environment always exists in any real system. By isolation of chaotic classical systems from this 

external noise we obtain classical analogues of isolated quantum devices with quantum 

correlations [86-87]. 

    Analogues of quantum computers are the molecular computers [56, 86-87]. The huge number of 

molecules ensures parallelism of evaluations. The unstable microscopic additional correlations 

(resulting in reversibility and returns) ensure dynamics of intermediate states to be unpredictable for 

the external observer which is not informed about the computer initial state. He would destroy 

computer calculation during attempt to measure some intermediate state.    .  

    Similar arguments can be used for classical cryptographic transmitting systems using these 

classical unstable microscopic additional correlations for information transition. "Message" is some 

classical system that is chaotic in intermediate states. So any attempt to intercept it inevitably destroys 

it similarly to QM case. 
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4) Conservation of unstable microscopic correlations can be ensured not only by passive isolation 

from an environment and the observer but also by active dynamic mechanism of perturbations 

cancelling. It happens in so-called physical stationary systems in which steady state is supported by 

continuous stream of energy or substance through system. An example is a micromaser [57] – a 

small and well conducting cavity with electromagnetic radiation inside. The size of a cavity is so small 

that radiation is necessary to consider with the help of QM. Radiation damps because of interaction 

with conducting cavity walls. This system is well featured by density matrix in base energy 

eigenfunction. This eigenfunctions are Zurek's "pointer states" (similarly to any system of closed to 

equilibrium). Such set is the best choose for Observable Dynamics. Microscopic correlations 

correspond to nondiagonal elements of the density matrix. Nondiagonal elements converge to zero 

much faster than diagonal ones during radiation damping. In other words, decoherence time is much 

less than relaxation time. However, beam of excited particles, passing through a micromaser, leads to 

the strong damping deceleration of density matrix nondiagonal elements (microcorrelations). It also 

leads to non-zero radiation in steady state. 

5)   An example of very complex stationary systems is alive systems. Their states are very far from 

thermodynamic equilibrium and extremely complex. These systems are high ordered but their order is 

strongly different from an order of lifeless periodical crystal. Low entropy disequilibrium of the live is 

supported by entropy growth in environment
13

. It is metabolism - the continuous stream of substance 

and energy through a live organism. On the other hand, not only metabolism supports disequilibrium, 

this disequilibrium is himself catalytic agent of metabolic process, i.e. creates and supports it at 

necessary level. As the state of live systems is strongly nonequilibrium, it can support existing unstable 

microcorrelations, disturbing to decoherence. These correlations can be both between parts of live 

system, and between different live systems (or live systems with lifeless system). If it happens 

dynamics of live system can be referred to as Unpredictable Dynamics. Huge successes of the 

molecular biology allow describing very well dynamics of live systems. But there are no proof that we 

capable to feature completely all very complex processes in live system.  

        It is very difficult to analyze real live systems within framework of Ideal, Observed and 

Unpredictable Dynamics because of their huge complexity. But it is possible to construct mathematical 

models of much less difficult nonequilibrium stationary systems with a metabolism. We can really 

analyze such systems. This is important problem for the further job of physicists and mathematicians. 

Some steps to this direction are described below in chapter about synergetic systems.  

   Let us do some important remark. Unstable microcorrelations exist not only in quantum, but also 

in classical mechanics. For example, they exist in classical chaotic systems (with intermixing). Hence, 

such models should not be only quantum. They can be classical too! It is very frequent error supposing 

only the quantum mechanics can feature similar appearances [1, 2].  Above we specified already many 

times that introduction "by hands" of small but finite interaction or initial state errors erase unstable 

microcorrelations. Hence, principal difference between quantum and classical mechanics disappears. 

6) The cases featured above do not describe all possible types of Unpredictable Dynamics. The 

exact requirements at which Ideal Dynamics transfers into Observable and Unpredictable Dynamics is 

the problem which is not solved completely yet by mathematics and physics. Another problem which is 
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not solved completely yet (and, apparently, related to the previous problem) is the important role of 

these three types of Dynamics in complex (live) systems. The solution of this problem will allow 

understanding more deeply the physical principles underlying the life. We will devote the following 

chapter to this problem. 

 

13. Complex (live) systems. 

 
   Let's mention here that while the previous statements were strict and exact, statements in the 

current chapter are more hypothetical. Let's assume in this chapter that the life completely corresponds 

to laws of physics. The following problems should be considered below: 

     What is the life and death from the point of view of physics?  

     Are there some live organism properties that are not compatible to physics? 

     What are properties of live systems different from lifeless systems from the point of view of 

physics? 

     When live systems have consciousness and free will from the point of view of physics? 

     The life is defined, usually, as special high ordered form of organic molecules existence, 

possessing ability to metabolism, reproduction, adaptation, motion, and response for external irritants, 

ability to self-preservation or even to rise of self-organizing. This is a true but too narrow definition: 

many of live systems possess only a part from these properties, some of these properties also exist in 

lifeless substance, and inorganic form of life can exist too. 

 

13.1 Life from the point of view of physics - the previous papers. 

 
   The first attempt to describe the life from the point of view of physics has given by Schrodinger 

[48]. In this book life has defined as an aperiodic crystal, i.e. the high ordered
14

 form of substance but 

not based on simple repetition as normal crystals are. It also has given two reasons doing Observable 

Dynamics of live systems stable to interior and exterior noise: the statistical "law of large numbers" 

and the step-type behavior of quantum transitions ensuring a stability of chemical bonds. It has marked 

similarity of live organism and clock: for both cases there is «an order from the order» despite high 

temperature noise. 

      The following step to understanding of life was made by Bohr [58]. He paid attention at the fact 

that according to QM full measuring of live system state inevitably perturbs its behavior. It results in 

unpredictability and incognizable character of life. The criticism of these sights of Bohr by Schrodinger 

[59] is not well-grounded. He writes that the full knowledge of quantum system state is probabilistic. 

So (unlike a classical case) the full quantum system state knowledge allows to predict the future just 

probably. The problem, however, consists in the fact that measuring creates stronger ambiguity than 
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  It means - possessing low entropy. The live system "eats" negoentropy from its environment. Thus, it is an essentially 
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the probabilistic character defined by QM. I.e. it is impossible to predict its behavior even probably! In 

absence of measuring the behavior would be different, than at its presence [41]. Measuring erases 

unstable classic (or quantum) correlations between system parts, changing its behavior. Thus, 

measuring makes behavior of system to be principally unpredictable, and not just probabilistic. It 

happens not just in QM, but also in CM where between real systems there is a small finite interaction 

destroying unstable additional microcorrelations. 

    In Bauer’s
15

 book [60] it was marked that high ordering (low entropy) are defined not only by 

nonequilibrium distribution of material in live organism but also by high-ordered (strongly unstable) 

structure of a live substance. This strongly unstable structure is not only supported by metabolism 

process but also it is catalytic agent for this metabolism. Seemingly, proteins or viruses have ordered 

structure also in the crystalline form. However, in a live substance it is possible to meet their much 

more high-ordered and low-entropy modifications. Eventually, nevertheless, there is degradation of 

structure in time. It leads to inevitability of death and necessity of reproduction for the conservation of 

life phenomena. I.e. metabolism process only very strongly decelerates decay of the complex live 

substance structure, instead of supporting them to be unchanged. The experiments described by Bauer 

confirm energy production and respective entropy increasing in autolysis. Autolysis is decay of a live 

substance because of lack of supporting metabolism. At the first stage of process energy is produced 

because of destruction of strongly unstable initial structure of live substance, and at the second stage of 

process - because of action of appearing or releasing protolytic (decomposing) enzymes. Bauer 

considered existence of this overmuch structural energy as an essential feature of life. 

Most of the above-mentioned papers considered only individual live organisms, whereas in fact it is 

possible to define and describe life as the totality of the live organisms (biosphere). Here the issue of 

the origins of life arises. The most complete answer to these questions from the point of view of 

modern physics is given in the paper of Elitzur [38]. The origin of life in this paper is considered as an 

ensemble of self-replicating molecules. Coming through the sieve of Darwinian natural selection, life 

accumulates the genetic information (or rather useful information (knowledge), in terms suggested by 

Elitzur) about the environment. This increases the level of the system’s organization (negentropy) in 

agreement with the second law of thermodynamics. Lamarck’s views in their too straightforward 

formulation were shown to contradict this law of physics. A wide range of issues is discussed in this 

paper. However, it has also the following drawbacks: 

The description is true for life as a whole, i.e. as a phenomenon, but not so for an individual live 

organism. 

The suggested reasoning disproves just the most simple and straightforward version of Lamarck’s 

theory, whereas there is a number of hypotheses and experiments illustrating the possibility of 

realization of Lamarck’s views in real life [61]. 

In Elitsur’s view, the self-organizing dissipating systems suggested by Prigogine (e.g., Benard cells 

[62] ), in contrast to the live organisms, are denied the adaptation capability. Naturally, the adaptability 

of Benard cells is incomparable with that of live systems, but still they do exist, even if in a very 

primitive form. Thus, Benard cells change their geometry or even disappear depending on the 
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temperature difference between the upper and lower layers of the fluid. This can be well considered a 

primitive form of adaptation. 

 

13.2 Life as process of preventing relaxation and decoherence. Conservation of both macroscopic 

correlations and unstable classical (or quantum) microscopic correlations. 

 

     Bauer determines life as a highly unstable system of self-maintaining due to motion and 

metabolism. Live systems resist to transition from an unstable state to a more stable one. We can 

suppose that this instability is mostly due to strongly unstable (additional in СМ or quantum in QM) 

microscopic correlations. Live systems tend to maintain these correlations and preserve them resisting 

to decoherence process. It must be mentioned that live systems can support such correlations both 

between their internal parts and with an environment. 

    Let's remind that we define two types of correlations in physical systems, the first one being 

stable to small external noise macroscopic correlations between system parameters. For example, it is 

connection between pressure, density and temperature for ideal gas. The second type is unstable 

microscopic correlations which lead to reversibility and Poincare's returns, both in quantum and in 

classical systems. Decoherence destroys these correlations, breaking reversibility and preventing 

returns. It leads to entropy increasing law. We assume that live systems possess ability to conserve 

these unstable correlations, slowing down or preventing decoherence. 

    Let's compare live and lifeless systems property to inhibit destroying and transformation to 

thermodynamic equilibrium. Systems can actively inhibit to relaxation process. Indeed, it is a case of 

live or lifeless stationary systems exchanging energy or substance with an environment. However, the 

system can inhibit not just to relaxation but also to decoherence. In lifeless systems it can be achieved 

by passive way, i.e. by isolation of the system from an environment. In live open systems it is reached 

by active interaction with environment, by external and internal motion, by metabolism. 

   Ability of life to support not only macroscopic but additional classic (or quantum) microscopic 

correlations makes life to be unpredictable, as it was assumed by Bohr. It is important that quantum 

mechanics is not necessary here; similar correlations exist also in classical mechanics. Analogue of 

quantum correlations are additional microscopic correlations in СМ. 

   Successes of the molecular genetics do not contradict to influence of unstable and unpredictable 

correlations which may be essential for life. It is possible to create some type of Observable Dynamics 

for life. Really, live systems are open systems actively interacting with a casual environment. The 

exterior observer interacts with them usually much less and cannot change in their behavior 

considerably. However, an attempt to understand and to predict life too explicitly and in details can 

break the complex and thin correlations conserved by life. It can lead to Unpredictable Dynamics of 

live systems, resulting in effect predicted by Bohr.  
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13.3 Synergetic systems - models of physical properties of complex (living) systems. 

 

Let's introduce concept of synergetic physical systems. We will define them as simple physical or 

mathematical systems illustrating some properties of complex (live) systems. First of all, we are 

interested in synergetic models of systems, capable to inhibit external noise (decoherence in QM). 

They conserve system correlations (quantum or classical), leading in reversibility or Poincare's to 

returns. 

   There are three methods to construct such systems: 

1) The Passive method: it is creation of some "walls" impenetrable for noise. Examples are models 

of modern quantum computers.  

2) The Active method, inverse to passive one: it is some kind of dissipative or live systems, 

conserving disequilibrium with the help of active interaction environment and also interchanging by 

energy and substance with environment (metabolism). It seems that the future models of quantum 

computers should be found in this field. 

3) When correlations are considered for system including the whole Universe. The external noise is 

impossible here. Source of correlations for such system is Big Bang. We will define these correlations, 

correspondent to whole Universe, as global correlations. 

      Two factors ought to be noted here: 

1) Many complex systems during their evolution pass dynamic bifurcation points (time moments). 

There is a set of possible future evolution ways after this moment of time but not just a single one. 

Selection of one of them depends on small perturbation of system state in bifurcation time moment 

[63-65]. In this moment even very small correlations (which can be conserved with the help of 

methods, describe above) can make enormous influence on evolution of the system. Existence of such 

correlations restricts predictive capability of physical science but does not restrict our personal 

intuition. Nevertheless, since we are integral part of this Universe we can really be capable to 

"anticipate" these correlations at some subjective level in principle. Whereas these correlations are 

impossible for experimental scientific observation, no contradiction with scientific laws exists here.  

2) Very powerful sources of negoentropy from an environment are necessary for both passive and 

active correlations conservation methods. Therefore full entropy of system and its environment can 

only increase. The entropy increasing law continues to be correct for full system including observable 

system, environment and observer, though it is not correct for observable system only. Entropy 

reduction in full system can happen in principle (in according with Ideal dynamics), but it is 

unobservable, as explained above. So we need not consider such unobservable situations. 

    Let's demonstrate some examples of synergetic models for physical processes.  

    So, crystals growth models ability of live systems reproduction. By the way, the analysis of these 

systems allows discovering a doubtful place [66-67] in Wigner's argumentation [27] about 

inconsistency between life organism reproduction ability and QM. Let's assume that interaction 

between reproducing quantum system and its environment is random. For such interaction Wigner 

really proves that reproduction probability is close to zero. However, actually this interaction is not 

casual but defined by a crystalline lattice of already existing crystal. In live organisms for protein 
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synthesis process there crystalline lattice is replaced by existing DNA nucleotide sequence, so the 

interaction is not random too. 

      The active deceleration of decoherence, similar to active correlations conservation methods in 

live systems, exists in open systems like micromasers already described above [57]. They are a one 

more example of synergetic systems. 

   One more active mechanism of decoherence inhibition is so-called «quantum teleportation» 

[24].  This process can reproduce the exact copy of any initial quantum state accompanied by 

destroying of this initial state. (To create copy of any quantum state accompanied by conservation of 

this state is impossible in QM [24].) We can reproduce this copying over and over again with small 

time intervals. It is possible to conserve any initial quantum system state for a long time with the help 

of such a process inhibiting decoherence. This process is equivalent to conservation of the initial 

measured state in the described above paradox «kettle which never will begin to boil». It is observed at 

multiple and frequent measuring of a current state. But there exists difference between these two cases 

too. For «quantum teleportation» case the initial state remains not just unchanged like “kettle paradox” 

case but also unknown. 

    Dissipative systems are active synergetic systems too. They illustrate properties of open live 

systems to relaxation deceleration, conservation of low entropy and primitive form of adaptation to 

surrounding medium change. 

     The other example is the quantum isolated systems (for example, the modern quantum computers 

at low temperatures). They demonstrate the property to conserve unstable quantum correlations. It is 

similar to conservation of the strong instability in the live systems, related also to conservation of 

similar quantum or classical correlations. However, unlike live systems, this conservation is passive.  

Penrose gives example of such systems, probably used by a brain for thinking [1, 2]. It is system of 

tubulin dimers serving as a basis for cytoskeleton microtubules of neurons (main cells of brain). The 

system of tubulin dimers is considered by Penrose as some quantum computer [23-25]. Even if this 

hypothetical model is not true it would illustrate principal possibility of quantum correlations 

existence in brain. Analogue of quantum correlations in СМ are additional unstable microcorrelations, 

and analogue of the quantum computer is the molecular computer with these additional correlations 

between molecules. Similar correlations appear in chaotic or almost chaotic classical systems (with 

intermixing). Probably it is possible to construct model of brain also on the basis of such classical (not 

quantum) chaotic systems. Thus they would have all properties of quantum computers - 

unpredictability, parallelism of calculations. Since Penrose wrongly considers classical chaotic systems 

as unsuitable for modeling of live systems, so he even does not consider such possibility. 

    Other example of synergetic systems illustrating properties of quantum correlations are the 

quantum oscillating systems almost isolated from an environment [8]. Let suppose there is some 

superconducting ring. State "A" corresponds to clockwise current, and a state "B" counter-clockwise 

one. Then this oscillating quantum almost isolated system can change its states by following: A -> 

A+B -> B -> A-B -> А. Here "A+B" and "A-B" are quantum superposition of states A and B. Suppose 

we would like to measure current directions in the ring. Such measuring can destroy superposition state 

if system would exist in such state at the moment of measuring. Thus, it can change dynamics of 

system and destroy quantum correlations between states of superposition [8]. 
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    It is possible to construct another example of oscillation system sensitive to measuring, which 

may be interesting for biologists and chemists. It will have actively protection from external noise 

influence. Let we have a process consisting of three stages. At the first stage there appears enzyme with 

unstable conformation "A". At the second stage it catalyzes some chemical process. In turn, this 

process inhibits destroying of unstable conformation A. Let us consider more complex situation. Let 

suppose there are two unstable conformations "A" and "B" which are capable to catalyze process at the 

second stage. Enzyme has no fixed conformation "A" , but sequential set of unstable transitions from  

A to B, from B to A, and so forth. At third stage enzyme goes to the third chemical reaction. If at its 

initial moment enzyme was in conformation A it indeed would catalyze this reaction. Otherwise, no 

catalysis appears. Thus the third stage depends on finite enzyme conformation state at the end of the 

second stage. Let during the second stage (at some time moment) we decided to measure enzyme 

conformation state (by nuclear magnetic resonance, for example). As transition process from A to B (or 

B to A) is unstable, measuring can break phase of this process. As result, at third stage beginning 

enzyme can come at conformation B instead of A. Thus, the third stage reaction can not begin. So 

measuring intermediate enzyme state can destroy process, changing its result products.  It can be true, 

both for quantum, and for the classical mechanics types of process. 

 

With the help of synergetic “toy” models it is possible to understand synchronicity (simultaneity) 

not coupled casually processes and global correlations phenomena.  

 

    Example are nonstationary systems with "peaking" (blow up) [63-65] considered by Kurdyumov's 

school. In these processes some function is defined on plane. Its dynamics is featured by the non-linear 

equations, similar to the burning equation.  Blowing up solution function can converge to infinity for 

finite time in single or several closed points on plane. It is interesting that function comes to infinity in 

all these points at the same moment of time, i.e. synchronously.  

     By means of such models we can illustrate population growth (or engineering level of 

civilizations) in megacities of our planet [68]. Points of the infinity growth are megacities, and 

population density is a function value. 

    Let's complicate the problem. Suppose that during some initial time moment there is very fast 

expansion ("inflation") of the plane with blowing up process. Nevertheless, processes of converging to 

infinity in points set remain synchronous despite that these points already are not closed and lie at huge 

distance.  

    This more complex model can explain qualitatively synchronism of processes in very far parts of 

our Universe after fast expansion caused by Big Bang ("inflation"). These blowing up processes appear 

only at some narrow set of burning equation coefficients. It allows drawing analogy with «anthropic 

principle» [69]. Anthropic principle states that fundamental constants have such values to allow our 

observed Universe to appear with anthropic entities inside, capable to observe it. 

 

    It is also interesting to illustrate the complex processes by means of "cellular" models. A good 

example is the discrete Hopfield model [70, 71]. This system can be featured as a square two-

dimensional lattice of meshes which can be either black or white. We will set some initial state of a 
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lattice. Coefficients of the linear interaction between meshes are unequal. They can be chosen in such a 

way that during its discrete evolution the initial state transfers in one of possible terminating states 

from previously defined known set of states (attractors). Let these attractors be A or B letters. 

   There are such initial unstable states which differ just on one mesh (a critical element). Thus, one 

of them has attractor A, and another one - B. Such synergetic model is a good illustration of global 

instability of complex systems. It also shows that this instability features the system as a whole, but it is 

not feature of some its parts. Only an external observer can change critical element and thus change the 

system evolution. Внутренняя динамика самой системы сделать это не может. Internal dynamics of 

the system itself is not capable of it. Global correlation between meshes of unstable initial state define 

unambiguously which attractor must be chosen by this lattice (either A or B). 

    This model can be interpreted as a neural network with feedback or as a spin lattice (spin glass) 

with unequal interactions between spins. The system can be used for pattern recognition. 

    It is possible to complicate model. Let each mesh in the lattice featured above itself is a similar 

sub-lattice. Let assume that the process runs in two stages.  

     At the first stage, large meshes do not interact, interaction is only in sub-lattices which change 

under the usual method. Initial states of all sub-lattices can be chosen as unstable. We will associate the 

final state A of sub-lattices as a black mesh of the large lattice, and B - as a white one.  

     The second stage of evolution is defined as usual evolution of this large lattice already, without 

modifications in sub-lattices. Its initial state which appeared at the previous stage can be unstable too. 

      Let the total state of coarsened lattice be the letter A, and its each large mesh is A too.  Let us 

name this state «А-А». Then appearance of this exact final state (but not some different one) is capable 

to explain correlations in unstable initial state by global meshes and by defined values of interaction 

coefficients between meshes. 

     Let's assume that before the featured above two stages process our coarsened lattice occupied a 

very small field of space but as a result of expansion ("inflation") was extended to enormous sizes. It 

was only thereafter when the process featured above had begun. So it is possible to explain existence of 

global correlations in unstable initial state (resulting in lattice attractor «А-А») by initial closeness of 

meshes (before "inflation"). A specific selection of interaction coefficients between meshes (also 

resulting in attractor «А-А») is possible to explain similarly to «anthropic principle». 

    Indeed, this coarsened lattice can be compared to our "Universe".  Its big meshes (sub-lattice) can 

be compared to "live organisms", inhibiting (actively or passively) «decoherence». «Decoherence» is an 

influence of some big mesh "environment" (i.e. influence of other meshes) on processes existing inside 

this mesh. Then global correlations of unstable initial lattice states can serve as analogues of possible 

global correlations of unstable initial state of our Universe, and interaction coefficients of meshes 

correspond to fundamental constants. Initial process of lattice expansion corresponds to Big Bang. 

  

13.4 Hypothetical consequences explaining life as a method for correlations conservation. 

 

The definition of life as the totality of systems maintaining correlation in contrast to the external 

noise is a reasonable explanation of the mysterious silence of Cosmos, i.e. the absence of signals from 
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other intelligent worlds. All parts of the universe, having the unique center of origin (Big Bang), are 

correlated, and life maintains these correlations which are at the base of its existence. Therefore the 

emergence of life in different parts of the Universe is correlated, so that all the civilizations have 

roughly the same level of development, and there are just no supercivilizations capable of somehow 

reaching Earth.  

    The effects of long-range correlations can explain at least a part of the truly wonderful 

phenomena of human intuition and parapsychological effects. A well-known psychiatrist Charles Jung 

wrote about it in his paper "On Synchronicity" [72-75]. We will cite here the most interesting 

fragments from this paper. Here is a fragment defining “synchronicity”: 

 

“But I would rather approach the subject the other way and first give you a brief description of the 

facts which the concept of synchronicity is intended to cover. As its etymology shows, this term has 

something to do with time or, to be more accurate, with a kind of simultaneity. Instead of simultaneity 

we could also use the concept of a meaningful coincidence of two or more events, where something 

other than the probability of chance is involved. A statistical- that is, a probable concurrence of 

events, such as the ''duplication of cases'' found in hospitals, falls within the category of chance… 

…space and time, and hence causality, are factors that can be eliminated, with the result that 

acausal phenomena, otherwise called miracles, appear possible. All natural phenomena of this kind 

are unique and exceedingly curious combinations of chance, held together by the common meaning of 

their parts to form an unmistakable whole. Although meaningful coincidences are infinitely varied in 

their phenomenology, as acausal events they nevertheless form an element that is part of the scientific 

picture of the world. Causality is the way we explain the link between two successive events. 

Synchronicity designates the parallelism of time and meaning between psychic and psychophysical 

events, which scientific knowledge so far has been unable to reduce to a common principle. The term 

explains nothing, it simply formulates the occurrence of meaningful coincidences which, in themselves, 

are chance happenings, but are so improbable that we must assume them to be based on some kind of 

principle, or on some property of the empirical world. No reciprocal causal connection can be shown 

to obtain between parallel events, which are just what gives them their chance character. The only 

recognizable and demonstrable link between them is a common meaning, or equivalence. The old 

theory of correspondence, was based on the experience of such connections- a theory that reached its 

culminating point and also its provisional end in Leibniz' idea pre- established harmony, and was then 

replaced by causality. Synchronicity is a modern differentiation of the obsolete concept of 

correspondence, sympathy, and harmony. It is based not on philosophical assumptions but on 

empirical experience and experimentation.” 

 

Here is citation giving an example of «synchronicity» from Jung’s personal experience: 

 

“I have therefore directed my attention to certain observations and experiences which, I can fairly 

say, have forced themselves upon me during the course of my long medical practice. They leave to do 

with spontaneous meaningful coincidences of so high a degree of probability as to appear flatly 

unbelievable. Ι shall therefore describe to you only one case of this kind, simply to give an example 



                           

 

 

64 

characteristic of a whole category of phenomena. It makes no difference whether you refuse to believe 

this particular case or whether you dispose of it with an ad hoc explanation. I could tell you a great 

many such stories, which are in principle no more surprising or incredible than the irrefutable result 

arrived at by Rhine, and you would soon see that almost every case calls for its own explanation. But 

the causal explanation the only possible one from the standpoint of natural science breaks down owing 

to the psychic relativization of space and time which together form the indispensable premises for the 

cause-and-effect relationship. 

 

My example concerns a young woman patient who, in spite of efforts made on both sides, proved to 

be psychologically inaccessible. The Difficulty lay in the fact that she always knew better about 

everything. Her excellent education had provided her with a weapon ideally suited to this purpose, 

namely a highly polished Cartesian rationalism with an impeccably "geometrical" idea of reality. After 

several fruitless attempts to sweeten her rationalism with a somewhat more human understanding, I 

had to confine myself to the hope that something unexpected and irrational would turn up, something 

that burst the intellectual retort into which she had sealed herself. Well, I was sitting opposite of her 

one day, with my back to the window, listening to her flow of rhetoric. She had an impressive dream 

the night before, in which someone had given her a golden scarab-a costly piece of jewellery. While 

she was still telling me this dream, I heard something behind me gently tapping on the window. I 

turned round and saw that it was a fairly large flying insect that was knocking against the window 

from outside in the obvious effort to get into the dark room. This seemed to me very strange. I opened 

the window and immediately caught the insect in the air as it flew in. It was a scarabaeid beetle, or 

common rose-chafer, whose golden green color most nearly resembles that of a golden scarab. I 

handed the beetle to my patient with the words "Here is your scarab." This broke the ice of her 

intellectual resistance. The treatment could now be continued with satisfactory results. 

 

This story is meant only as a paradigm of the innumerable cases of meaningful coincidence that 

have been observed not only by me but by many others, and recorded in large collections. They include 

everything that goes by the name of clairvoyance, telepathy, etc., from Swedenborg's well-attested 

vision of the great fire in Stockholm to the recent report by Air Marshal Sir Victor Goddard about the 

dream of an unknown officer, which predicted the subsequent accident to Goddard's plane. 

 

 

All the phenomena I have mentioned can be grouped under three categories:  

 

 

1. The coincidence of a psychic state in the observer with a simultaneous, objective, external event 

that corresponds to the psychic state or content (e.g., the scarab), where there is no evidence of a 

causal connection between the psychic state and the external event, and where, considering the psychic 

relativity of space and time, such a connection is not even conceivable. 
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2. The coincidence of a psychic state with a corresponding (more or less simultaneous) external 

event taking place outside the observer’s field of perception, i.e., at a distance, and only verifiable 

afterward (e.g., the Stockholm fire). 

 

 

3. The coincidence of a psychic state with a corresponding, not yet existent, future event that is 

distant in time and can likewise only be verified afterward. 

 

In groups 2 and 3 the coinciding events are not yet present in the observer's field of perception, but 

have been anticipated in time in so far as they can only be verified afterward. For this reason I call 

such events synchronistic, which is not to be confused with synchronous.” 

 
       This «synchronicity» described by Jung from the scientific point of view can be explained not 

just by accidental coincidence but also by unstable unobserved correlations existing between live 

organisms and environmental objects. As we already wrote above, metabolism processes can support 

such correlations and inhibit their «entangling» with an environment during decoherence. As these 

correlations are unstable, they are not observed (i.e. correspond to Unpredictable dynamics). This 

explanation does not necessarily require the use of quantum mechanics, since similar correlations can 

be found in classical mechanics that have analogues of the quantum correlations. Attribution of such 

correlations exclusively to quantum mechanics is a common mistake. 

    Unobservability of these correlations for the external observer does not mean that they can not be 

registered by our subjective experience in form of some «presentiments». Similarly, the external 

observer cannot measure or predict calculation result of quantum computer because any attempt of 

doing it would destroy this calculation. Let assume that the quantum computer has some 

"consciousness". Then he can have some “presentiment” of a future result of calculation, unlike the 

external observer who can not.  

               The above consideration does not "prove", however, that «synchronicity» is actually 

related to unstable correlations. We can just conclude that such assumption does not contradict to 

physics. Any observational verification of this hypothesis does not seem possible in principle. The 

reason is principal unobservability of these correlations.  

       For example, let's assume that some person had started two initially correlated quantum 

computers and knew their initial state.  Further it got dead or disappeared. Then we never can predict 

future calculations results for these two computers. If we would see some correlations between its 

calculations results (for example, they are the same) we have not any way to choose between two 

possibilities: it is caused by initial conditions correlations or it can be explained by simple accidental 

coincidence. Indeed, any attempt to measure internal state of quantum computer during calculation 

process leads inevitably to destroying its correct operation! Similar reasonings are correct not only for 

quantum but also for chaotic classical systems with unstable additional microscopic correlations. 

     May be our real World of live entities actually is also a set of such correlated computers with 

unobservable unstable correlations between them? And the role of live substance consists just in 

conservation of these correlations? Only God can know their exact initial state if we suppose His 
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existence. But existence of such correlations is quite possible, because our World has appeared from a 

single point as a result of «Big Band». And all live organisms on our planet, may be, can be a result of 

unique "protocell" evolution. 

     Large human insight and some parapsychological effects can lie in a narrow field, on the verge of 

comprehensibility by exact science. This is the field of Unpredictable Dynamics. Their basic 

elusiveness and instability does not allow for natural selection to increase these properties [76, 77]. 

Because of instability and unpredictability it also is not possible to investigate these appearances by 

scientific methods. Though these appearances do not contradict to any physical laws and are quite 

possible from point of view of physics. 

     Mensky [4] in his book also tries to justify some fine points of human intuition and 

parapsychological effects through specific features of quantum mechanics. However, he makes some 

very typical errors.  

 1)  For explanation of these effects there is no necessity of quantum mechanics laws "violations". 

For example, no transitions to other parallel Worlds (introduced by Multi-world interpretation) by 

means of "consciousness forces" of some "medium" are necessary. It is enough to assume some 

correlation between desires of "medium" and happening events. Because of these correlations the 

environment can “play along” our desires. In turn, the consciousness, because of these correlations can 

"have a presentiment" of the future. Attempt “to measure” or “to discover” these unstable quantum 

correlations will lead just to their vanishing and nonreversible changing further evolution. Any 

“violation” of usual quantum mechanics laws by "medium" is not necessary. 

2)  Effects, similar to quantum ones, can happen in classical chaotic systems too. Accordingly, all 

these effects can be modeled classically, without quantum mechanics. 

3)  Mensky writes about complexity and even impossibility of validation of individual system 

evolution from the scientific point of view. During such evolution we observe non-repeated events. 

Their probabilities are described by different probability distributions. Really, usually in a science for 

verification of some probabilistic theory, an ensemble of the same events is used with the help of «law 

of large numbers». [16] Nevertheless, there is the “law of large numbers” for events of different kinds 

too! (Generalized Chebyshev’s theorem, Markov’s theorem) [16] Hence, by means of these statements 

consistency in QM laws can be examined also for such a complex set of different events, correspondent 

to individual system evolution. 

   

    14. Conclusion. 

 
Thus, this paper is not just a kind of abstract philosophical discussion. Lack of understanding of 

the principles discussed in this paper can lead to mistakes in solving physical problems. Most of the 

real systems cannot be described with ideal equations of quantum or classical mechanics. The influence 

of the measurement and environment on the system (which is inevitable in quantum mechanics and 

almost always present in classical mechanics) disturbs the evolution of the system. The attempt to 

include the observer and the environment into the system to be described leads to the paradox of the 

self-observing system (see Appendix M). Such system cannot measure and retain complete 
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information on its own state. Even the approximate (self-) description in such system can only have 

applicability in time domain limited by times small enough to be much less than the return time for this 

system. After this return time is determined according to the Poincare’s theorem all the information 

concerning the previous state of the system is inevitably erased. However, the description of the system 

in this case is possible in the frame of observable dynamics. The possibility of such description is 

explained by the independence of observable dynamics on the type and value of external noise for a 

wide range of noise types, thus observable dynamics is determined only by the properties of the system 

itself. Observable dynamics can be based on roughening of the distribution function or density matrix, 

because the initial state of the system is not defined precisely. The difference between the observable 

and the ideal dynamics cannot be experimentally verified even when observer and environment are 

included into the system to be described, because self-description is limited in precision and 

observation time domain. Thus the returns of the system to the initial state predicted by the Poincare’s 

theorem for ideal dynamics cannot be observed by the self-observing system due to the effect of 

erasing of information concerning the previous states. Introduction of Observable Dynamics helps to 

solve all the known paradoxes of classical and quantum mechanics. 

Lack of understanding of the principles discussed in this paper can lead to mistakes in solving 

physical problems. Given below are several examples of such mistakes, including the errors in the pole 

theory for the problems of flame front motion and the “finger” growth at the liquid/liquid interface. 

       Sivashinsky et al. [78] state that the Ideal Dynamics of poles causes an acceleration of the flame 

front propagation, and that this is not due to noise because the effect does not disappear with the 

decrease of noise, and depends purely on the properties of the system. However, the noise-connected 

Observable Dynamics does not depend on the noise over a wide range of its values. 

Tanveer et al. [79] found a discrepancy between the theoretical predictions for “finger” growth in 

the problem of interfacial fluid flow and the results of numerical experiments. However, no 

understanding was reached in paper [79] of the connection of this discrepancy with the numerical 

noise, which leads to a new Observable Dynamics. 

 These are just two examples taken from the daily practice of the author of the present paper, and 

more such examples can be easily found. 

The results of this paper are necessary for through understanding of the basics of nonlinear 

dynamics, thermodynamics, and quantum mechanics. 

    In usual problems of physics usually there is no necessity for the deep analysis of a situation made 

in this paper. It related to fact that usual considered physical systems are either systems with small 

number of particles, or systems of many particles closed to thermodynamic equilibrium. In such 

systems it is possible either to use precise Ideal Dynamics, or to use the simplified "approximate" 

methods for deriving Observable Dynamics. It is, for example, reduction in QM or Boltzmann equation 

in СМ. Therefore, interest of physicists to papers similar to this one is small enough. However, many 

physical systems are not included into narrow class, featured by Ideal or simple Observable Dynamics. 

Their behavior basically is unpredictable, even probabilistically. We named their behavior as 

Unpredictable Dynamics. Quantum computer concerns to such systems from the point of view of the 

observer who did not observed its "start". Systems with Unpredictable Dynamics can include also some 

stationary systems far from thermodynamic equilibrium. Live organisms can be examples of such 
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stationary systems. Even if such systems could be partially or completely featured by Observable 

Dynamics, its deriving is very nontrivial problem. If physics would try to feature such complex 

systems, then understanding of methods stated in this paper becomes necessary. Many such problems 

still wait for solution from physicists and mathematicians: 

     1) Which methods for deriving of Observable Dynamics of complex systems exist? 

     2) When deriving of Observable Dynamics is impossible and system can be featured just by 

Unpredictable Dynamics? 

      3) Whether is it possible to create «synergetic» systems «on paper» (for example, similar to 

Penrose's tubulins), which would illustrate principal possibility of appearance and existence of 

complex stationary systems (both classical, and quantum), featured by Unpredictable Dynamics? We 

will try to give here only some guesses about this possibility: 

a) The systems featured by Unpredictable Dynamics, should be capable to inhibit decoherence and 

to conserve unstable additional classical (or quantum) correlations both inside complex systems, and 

between systems.  

b) Such systems can have several unstable states and can transfer between them during evolution. 

The stream of negoentropy, substances or energies (i.e. metabolism) would allow to conserve these 

unstable states and process, without destroying it, and to protect them from external noise. On the other 

hand, unstable systems can serve itself as catalytic agents of this metabolism. In such systems would be 

possible both inverse processes, and Poincare's returns. Indeed, they are protected from external noise 

(decoherence) by the metabolism. External noise would be reduced and be incapable to destroy these 

process or states. But, any attempt to measure a current state or process in this unstable system would 

destroy its dynamics. Thus, this dynamics would be unobservable. Such systems can be not only 

quantum, but also classical. 

c) In usual physics a macrostate is considered as some passive function its microstate. However, 

suppose that some system itself is capable to measure both the own macrostate, and its environment 

macrostates. In such a way, feedback of macrostates through microstate appears. [3] (Appendixs 

M and V) 

d) It can be some kind of self-replicated cellular automata. [80] 

 

Last years were published very interesting papers in the direction of building-up such «synergetic» 

systems, probably similar to live organisms [81-83]. It must be mentioned that build-up of such models 

is a problem of physics and mathematics, not philosophy. 

    Appendix A.  Phase density function. [5-6, 14] 

The state of a system of N particles identical from the point of view of classical mechanics can be 

given by the coordinates r1, …, rN and momenta p1, …, pN of all the N particles of the system. For 

brevity’s sake we shall further use the notation 

 

 xi=(ri,pi) (i=1, 2, …, N)  
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to designate the set of coordinates and the momentum spatial components of a single particle, and 

the designation  

 

 X= (x1, …, xN)=(r1, …, rN , p1, …, pN) 

 

to denote the set of coordinates and momenta of all the particles of the system. The corresponding 

state of 6N variables is called 6N-dimensional phase space. 

We shall consider a Gibbs ensemble, i.e. a set of identical macroscopic systems in order to define 

the concept of distribution function. The experimental conditions are similar for all these systems. 

However, since these conditions do not determine the state of the systems unambiguously, then 

different values of X shall correspond to different states of the ensemble at a given time t. 

We select a volume dX in the vicinity of the point X. Assume that at a given time t this volume 

contains points characterizing the states of dM systems from the total number M of systems in the 

ensemble. Then the limit of the ratio of these values 

 

m
lim dM/M=fN(X,t)dX 

 

defines the density function of the distribution in phase state at time t. This function is obviously 

normalized as follows: 

 

∫ fN(X,t)dX=1 

 

The Liouville equation for the phase density function can be written in the form: 

N
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where L is the following linear operator: 
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where H is the energy of the system. 

Appendix B. Definitions of entropy. 

We can give the following definition of entropy: 

 

S=-k ∫ (X)fN(X,t) ln fN(X,t) 

 

In quantum mechanics entropy is defined via density matrix: 

 

S=-k tr ρ ln ρ [15] 

 

where tr stands for matrix trace. 
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Entropy defined in such a way does not change in the course of reversible evolution. Coarsened 

values of fN or  should be used to obtain the changing entropy. 

 

Appendix C.  Poincare's proof of the theorem of returns. 

 

The number of the phase points which are leaving the given phase volume g during motion and not 

returned in it, will be eventually less any finite portion of the full number of phase points. We will 

prove this standing. 

Let's consider the system having finite phase volume G. We will select inside this volume some fixed 

surface ζ, restricting small volume g. We will consider the phase points flowing through a surface ζ 

from volume g. The velocity of transition of a phase point on a phase trajectory depends only on phase 

coordinates, therefore number of the points flowing in a unit of time through the fixed surface ζ, does 

not depend on time. We will designate through g' the volume occupied with phase points which flow in 

a unit of time from phase volume g, not being returned in it again. During Т g'T volumes of a phase 

fluid flows from volume g. As the flowed out volume is g'T. Under the assumption, it is not returned 

more in volume g as it should fill a remaining part of the full  phase volume G. A phase fluid is 

incompressible, therefore flowed out  of g the volume g'T should not exceed volume in which it will 

flow out, i.e. 

Tg ' <G-g <G. (1) 

Volume G is finite, therefore at finite g ' this inequality can be satisfied only for finite T. For T-> ∞, 

the inequality (1) is satisfied only at g '-> 0, as it must be shown. 

 

Appendix D. Correlation. 

Let's consider the following problem. A series of measurings of two random variables X and Y has 

been carried out, and measurings were carried out pairwise: i.e. we got two values for one measuring - 

xi and yi. Having the sample consisting of pairs (xi, yi), we wish to check, whether there is dependence 

between these two variables. This dependence is named correlation. Correlation can exist not only 

between two, but also a larger number of magnitudes. 

Dependence between random variables can have the functional character, i.e. to be the strictly 

functional ration linking their values. However, at handling of experimental data dependences of other 

sort are much more often - statistical dependences. Distinction between two aspects of dependences 

consists in the fact that that the functional connection establishes strict correlation between variables, 

and statistical dependence only speaks for the fact that distribution of random variable Y depends on 

what value is accepted by a random variable X.  

Coefficient of Pearson's Correlation. 

There are some various coefficients of correlation to each of which the above told will relate. 

Coefficient of Pearson's Correlation characterizing a degree of a linear relation between variables is 

most widely known. It is defined as 
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Appendix E. Thermodynamic equilibrium of the isolated system. Microcanonical distribution. 

[5, 14] 

  We will be interested in an adiabatic system – a system isolated from external  bodies and having 

certain, strictly given energy E. 

MICROCANONICAL distribution 

Let's consider an adiabatic system, i.e. a system which cannot exchange energy with external bodies 

at invariable external parameters. For such a system, obviously,      

 

 Н (Х, a) = E = const                                                                                                                          (1) 

 

and phase density function θ (ε) should look like acute maxima since energy of the system can be 

practically precisely fixed and will not change eventually. But phase density θ (ε) in a limit at ΔЕ-> 0 

turns, up to a constant factor, to a Dirac delta function δ {ε - Ε}. Thus, for an adiabatic isolated system 

it is possible to suppose: 

 

ω (X) =[1 / Ω (Ε, α) ] δ {Ε - Η (Χ, α)},                                                                                              (2) 

 

Where 1 / Ω (Ε, α) is the norming factor that can be found from requirement of normalization, i.e. 

 

Ω (Ε, α) =∫(X) δ {Ε - Η (Χ, α)}dX                                                                                                        (3) 

 

Expression (2) is named as microcanonical Gibbs distribution. On basis of this distribution it is 

possible to calculate phase averages of any physical quantities for adiabatic isolated system with the 

help of formula 

   

)X(

dX)}a,X(HE{
)a,E(

)X(FF 


1
                                                                       (4) 

Magnitude Ω (Ε, α) has visual geometrical meaning. Ω (Ε, α) dE has sense of phase volume  of 

lamina concluded between hypersurfaces Н(Х,а) = Е and H (X, a) = E + dE. 

 

Appendix F. Theorem about invariance of phase "fluid" volume. 

 

Let suppose that each mass point of system is featured  by Cartesian coordinates 

xk, yk, zk (k = l, 2..., Ν). 
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We also sometimes will designate of these three coordinates vector  
kr
  . This system of N mass 

points can be featured also 3 Ν by generalized coordinates: 

qn (x1..., zN) (n=1, 2..., ЗN). 

Equations of motion of such conservative system  are the equations of Lagrange  
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Where L=K-U-function of Lagrange, or a Lagrangian; K -  a kinetic energy; a system U-potential 

energy. However in a statistical physics it is more convenient to use equations of motion  in the 

Hamilton shape: 
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- A Hamiltonian function, or a Hamiltonian, a (q1, q2..., q3N; p1, p2..., p3 Ν) - a population of canonical 

variables. In blanket deductions we will designate all canonical variables letter Х and, supposing: 

qk=Xk, pk = Xk+3N {k=1, 2..., 3 Ν). (3) 

For formulas transforming to compact form all population of variables (Xl, Х2..., Х6N) will be often 

designated by one letter (X), and product of all differentials dX1 dX2 ...dX6N it will be designated 

through dX. 

The equations of Hamilton represent system of the differential equations of the first order, so values 

of all variables X during the moment t are completely defined if values of these variables Х0 during the 

moment t = 0 are known. This property of the Hamilton shape mechanically allows introducing 

geometrically the evident image of the system and its motion in a phase space. Driving of phase 

ensemble in a phase space can be considered as motion of a phase fluid, by analogy to motion of a 

usual fluid in three-dimensional space. In other words, phase space points are identified with points of 

the imaginary phase fluid filling space. 

It is easy to prove, that for the systems, satisfying to the Hamiltonian equations, a phase fluid is 

incompressible. Really, the denseness of a usual three-dimensional incompressible fluid is constant. 

Hence, owing to the continuity equation 
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And requirements ρ = const for an incompressible fluid, we have: 
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This theorem can be easily extended for a fluid in many-dimensional space, and consequently, for 

an incompressible phase fluid the requirement of equality to zero of a multi-dimensional divergence 

should be satisfied, i.e. 
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It can be seen easily, however, that owing to the equations of Hamilton (2) 
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, as it must be shown. 

Since a phase fluid is incompressible so during its motion there is the invariable phase volume 

occupied  with any part of this fluid. 

 

Appendix G. The basic concepts of quantum mechanics. [18-20] 

       Wave function. 

The basis of a mathematical apparatus of quantum mechanics is made by the statement that the system 

state can be described by (generally speaking, complex) function of coordinates Ψ (q), and the quadrate 

of the module of this function defines a probability distribution of values of coordinate q: | Ψ(q) |
2
dq  is  

probability to find values of coordinates in [q,q+dq] space interval for measuring produced over the 

system. Function Ψ is termed as a system wave function.  

Observable variables. 

Let's consider some physical quantity f, characterizing state of a quantum system. Strictly speaking, in 

the following discussion we should speak not about one variable, but about their full set at once. 

However, for simplicity we will speak below only about one physical quantity. 

Values of some physical quantity are named as its eigenvalues, and their full set is named as 

spectrum of eigenvalues for this variable. In classical mechanics a set of all possible values of any variable 

is generally continuous. In  a quantum mechanics also there are physical quantities (for example, 

coordinates) which eigenvalues fill the continuous number; in such cases it is continuum spectrum of 

eigenvalues. If all possible eigenvalues are some discrete set; in such cases it is discrete spectrum. 

Let's consider at first for simplicity that considered variable f possesses a discrete spectrum. Variable 

eigenvalues f we will designate as fn where the index n can have values 1, 2, 3, …. We will designate Ψn 

for system wave function of state correspondent to value fn of variable f. Ψn is named as eigenfunctions of 

the given physical quantity f. Each of these functions is normalized, i.e.  

 

     ∫ | Ψn |
2
dq = 1.                                                                                                                               (1) 

 

If the system has some arbitrary state with some wave function Ψ the measuring of variable f will 

give one of eigenvalues fn. According to a principle of superposition  the wave function ψ should 

represent a linear combination of all eigenfunctions ψn  correspondent  to all values fn that can be 

measured with nonzero probability. Therefore, generally any state function Ψ can be presented in the 

following form  
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Ψ = Σ anΨn,                                                                                                                                         (2) 

 

,where summation is yielded on all п, and an - some constant coefficients. 

Thus, we can conclude that any wave function can be expanded to the set of eigenfunctions of some 

physical quantity. Such a set is named complete set of functions. 

In expansion (2)  the module quadrate  | an |
2
  defines probability to measure fn of variable f for state 

with a wave function Ψ. Sum of all probabilities should be equal to one; in other words, the relation 

should take place 

 
n

na 1|| 2

                                                                                                                                                                                             (3) 

Observable variable can be defined by means of the operators over function space. Result of 

operator action on function is also function. Then eigenfunctions ψk and its eigenvalues λk are simply a 

solution of the functional equation: 

 

  A ψ k = λk ψk                                                                                                               (4)  

 

, where A is an operator of correspondent observable variable. 

 

Label Н is usually used for Hamiltonian - an energy operator. 

For one particle in external field U (x, y, z) it is defined by the following formula: 
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    The matrix form of a quantum mechanics.  

    Let's expand some function under operator action, and the output function over eigenfunctions 

of some observable variable. Then both these functions can be noted as columns of these expansion 

coefficients. The operator of the observable variable can be noted in the form of a square matrix. 

Product of this matrix on a column of coefficients of expansion of the first function will give 

coefficients of expansion of the second function. This form of operators and functions is named the 

matrix form of a quantum mechanics.  

      

                                                                                                                       

 

Schrodinger equation. 

 

Let's write out here a wave equation of motion for a particle in an external field.  
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                                                                                                  (6) 

The equation (6) has been found by Schrodinger in 1926 and is named a Schrodinger equation. 

 

       Uncertainty principle of Heisenberg. 

 

If we characterize indeterminacies of coordinates and momentums by average quadratic fluctuations 

  ,
2

xxx   2

xxx ppp 
, 

 it is possible to find the minimal possible value of their product. 

Let's consider a one-dimensional case - a package with wave function ψ (x), depending only on one 

coordinate; we will guess for simplicity that medial values x and рх in this state are equal to zero. We 

start with obvious inequality 

0
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Where α is any real constant.  

Let's calculate this integral.  

Using that 
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finally we obtain: 
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
  

This quadratic trinomial (over α) is non-negative for any α, if its discriminant is non-positive. From 

this condition we can obtain inequality: 

 

δx δpx ≥ ħ/2                                                                                                                                                       (7) 

 

The minimal possible value of product is equal to ħ/2. 

This uncertainty principle (7) was found by Heisenberg in 1927 

We see that decreasing of coordinate uncertainty (i.e.  δх) results in increasing uncertainty of 

momentum along the same axis( δрх), and on the contrary. In particular case, when the particle is in 

some strictly certain point of space (δх = δy = δz = 0), so δрх = δру = = δpz = ∞. It means that all values 

of momentum have equality probability. On the contrary, if the particle has strictly certain momentum 

р all its positions in space have equal probability. 
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Appendix I. Density matrix. 

 

Consider a beam of Na particles prepared in state |χa›, and another beam of Nb particles in state |χb› 

independent on the first one. To describe the combination of beams we introduce the mixed state 

operator ρ defined as follows: 

 

ρ=Wa|χa›‹χa| + Wb|χb›‹χb|, 

 

where Wa=Na/N, Wb=Nb/N, N=Na+Nb 

Operator ρ is called a density operator or a statistical operator. It describes the way the beams were 

prepared and therefore contains complete information about the total beam. In this sense the mixture is 

completely defined by the density matrix. In the special case of a pure state |χ› the density operator is 

given by the expression 

 ρ=|χ›‹χ|. 

Operator ρ is usually convenient to write in matrix form. Therefore we choose a basic set of states 

(most commonly used are |+1/2› and |-1/2›) and decompose the |χa› and |χb› states over this basic set as 

follows: 

 

 |χa›=a1
(a)

 |+1/2›+a2
(a)

 |-1/2›, 

 |χb›=a1
(b)

 |+1/2›+a2
(b)

 |-1/2›. 

 

In the representation of |±1/2› states we have the relations for the kept states: 
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and for the conjugated states: 

 

‹χa|=(a1
(a)*

 , a2
(a)*

 ) , 

‹χb|=(a1
(b)*

 , a2
(b)*

 ) . 

 

Using the matrix multiplication rules we obtain for the “external product”: 
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and a similar expression for the |χb›‹χb| product. Substituting these expressions into the density 

operator, we obtain the density matrix. 
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Since the |±1/2› states were used for the basic state, the obtained expression is called density matrix 

in {|±1/2›} representation. 

 

Statistical density matrix P0. 

 

In conclusion, we make several notes concerning the statistical matrix P0 which has remarkable 

properties. We know that all the possible macroscopic states of the system in classical statistical 

thermodynamics are considered a priori equiprobable. In other words, the states are considered equally 

probable, unless information is available concerning the total energy of the system, its contact with the 

thermostat ensuring the constant temperature of the system, etc. Similarly, in wave mechanics all the 

states of the system corresponding to the functions forming the complete system of orthonormalized 

functions can be a priori considered equiprobable. Let θ1,…,θk, is such a system of basis functions. 

Provided the system is characterized by a mixture of the θk states, in the absence of other relevant 

information we can assume that the statistical matrix of the system has the form 

 

P0=
k

k
pP , where 1

k

p , 

 

i.e. that P0 is the statistical matrix of a mixed state with all equal statistical weights. Since θk are the 

basis functions, matrix P0 can be represented as follows: 

 

(P0)kl=pδkl 

 

If matrix P0 characterizes the statistical state of the ensemble of systems at the initial moment of 

time, and the same value A is measured in all the systems of the ensemble, then the statistical state of 

the ensemble would be still characterized by the P0 matrix. 

 

The equations of motion for the density matrix. 

 

The equations of motion for the density matrix  have the form: 

N
N L
t

i 






 

where L is the linear operator: 

Lρ=Hρ-ρH=[H,ρ], 

where H is the energy operator of the system. 

 

If A is the operator of a certain observable, then the average value of the observable can be found as 

follows: 
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<A>=trAρ 

 

 

 

Appendix J. Reduction of the density matrix and the theory of measurement 

 

Assume that the states ζ
(1)

, ζ
(2)

, ...  are “clearly discernible” in measuring a certain object. The 

measurement performed over the object in one of these states yields numbers λ1, λ2, ... . The initial 

state of the measuring device is designated a. If the measured systems was initially in the state ζ
(ν)

, then 

the state of the complete system “measured system plus the measuring device” before their interaction 

is determined by the direct product a X ζ
(ν)

. After the measurement 

 

 a X ζ
(ν)

→a
(ν) 

X ζ
(ν) 

 

Assume now that initial state of the measured system is not clearly discernible, but is an arbitrary 

mixture: α1 ζ
(1) 

+ α2 ζ
(2)

+... of such states. In this case, due to the linearity of the quantum equations, 

we obtain: 

 

a X [Σανζ
(ν)

]→Σαν[a
(ν) 

X ζ
(ν)

] 

 

There is a statistical correlation between the state of the object and the state of the device in the final 

state resulting from the measurement. A simultaneous measurement of two values in the system 

“measured object and measuring system” (the first one is the measured characteristic of the studied 

object, and the second is the position of the measuring device indicator) always leads to correlating 

results. Therefore one of the measurements mentioned above is superfluous: a conclusion on the state 

of the measured object can always be made based on observing the measuring device. 

The state vector obtained as the measurement result cannot be represented as a sum in the right hand 

part of the relation above. It is a so-called mixture, i.e. one of the state vectors having the form: 

 

a
(ν) 

X ζ
(ν)

, 

 

and the probability of this state appearing as the result of interaction between the measured object 

and the measuring device is |αν|
2
. This transition is called wave packet reduction. And corresponds to 

the transition of the density matrix from the non-diagonal form αναμ
*
 to the diagonal form |αν|

2 
δνμ. This 

transition is not described by the quantum mechanical equations of motion.  

 

Appendix K. Coarsening of the phase density function and the molecular chaos hypothesis. 

 

Coarsening of the density function is called its substitution with an approximate value, e.g.: 
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fN
*
(X,t)=∫ (Y)g(X-Y)fN(Y,t)dY 

 

where 

  

g(X)=1/Δ D(X/Δ) 

 

D(x)= 1 for |X|<1 

D(x)= 0 for |X|≥1  

Another example of coarsening is the “molecular chaos hypothesis”. It implies substitution of a two-

particle distribution function with a product of single-particle functions as follows: 

 

f (x1,x2,t) -> f(x1,t)f(x2,t) 

Appendix L. Prigogine’s New Dynamics. 

The New dynamics introduced by Prigogine is often mentioned in the present paper. Given below is 

a brief introduction to this theory based on the monographs [14, 55]. 

A linear operator  is introduced, which acts on the phase density function or density matrix  so 

that: 

 1~  

Λ
-1

 1=1 

  ~  

 

where Λ
-1

 remains positive. The requirement on the operator  is that the function Ω defined via the 

function ~   as follows: 

   ~~tr  or  ~ln~tr  

complies with the inequality dΩ/dt≤0 

The equation of motion for the transformed function ~  is 


 ~

t

~





 

where Φ= Λ
-1

 LΛ 

Φ is noninvertible markovian semigroup. 

Λ
-1

(L)=Λ
+
(-L) 

Operator Λ
-1

 for the phase density function corresponds to the coarsening in the direction of phase 

volume decrease. In quantum mechanics such operator can only be found for an infinite volume or an 

infinite number of particles. A projection operator P is introduced in quantum mechanics, which makes 

all the non-diagonal elements of the density matrix zero. Operator Φ and the basis vectors of the 

density matrix are chosen so that the operators Φ and P are permutable: 
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
 ~P~P
t

~P
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


 

 

Appendix M. Impossibility of self-prediction of evolution of the system. 

 

Suppose there is a powerful computer capable of predicting its own future and that of its 

environment based on the calculation of motion of all the molecules. Suppose that the prediction is 

rolling of a black or white ball from a certain device, which is an integral part of the computer and is 

described by the machine. The device rolls out a white ball when the computer predicts a black one, 

and rolls out a black ball when the white one is predicted. It is clear that the predictions of the 

computer are always false. Since the choice of the environment is arbitrary, then this contrary instance 

proves the impossibility of exact self-observation and self-calculation. Since the device always 

contradicts the predictions of the computer, then complete self-prediction of the system including both 

the computer and the device is impossible. 

 

 

 

Figure 27. Impossibility of self-prediction. (Fig. from [101]) 

 

Appendix N. Tables of correspondence between the quantum and classical mechanics. 

          Table 1. Bsic Properties of quantum and classical mechanics 

 

Quantum mechanics Classical mechanics 

Density matrix Phase density function 

Equation of motion for the density matrix Liouville equation 

Wave packet reduction Coarsening of the phase density function or  

the molecular chaos hypothesis 

Unavoidable interaction of the measured 

system with observer or environment, described 

by reduction 

Theoretically infinitesimal but in reality a 

finite, if small, interaction of the measured 

system with observer or environment 

Non-zero non-diagonal elements of the Correlations between the velocities and 
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density matrix positions of particles in different parts of the 

system 

Table 2. Probability formulations in classical and quantum mechanics. [18] 

 

 Classical mechanics Quantum mechanics 

Pure state 

 

 

General state 

 

 

Normalization condition 

 

condition for  pure sate 

 

Equation of motion 

 

 

 

 

Observable 

 

 

Average value 

Point   (q, ρ)   of phase space  

 

 

Probability density ρ(q, p) 

 

 

∫ρdqdp=l 

 

ρ = δ-function 

 

 


,H
t





 

 

 

 

Function  А(q, р)  

  

 

     ∫Аρ dq dp 

State vector |ψ > 

 

 

Positive hermitean operator ρ 

 

 

tr ρ = l 

 

ρ=|ψ> <ψ| (operator ρ rank is equal to 1) 

 

],[ 


H
t

i 



  

 

 

 

Hermitean operator А 

 

 

  tr (Аρ) 

 

  

Appendix O. A system reduction at measuring. [15, 18] 

Let's consider  a situation when the measuring device was at the beginning  in state | α0 ›, and the 

object was in superposition of states |ψ› = ∑ci|ψi›,, where | ψi› 
-
  experiment eigenstates. The initial 

statistical operator is given by expression 

ρ0=|ψ› |α0›‹α0| ‹ψ|                                                                                                                                (1) 

     The partial track of this operator which is equal to statistical  operator of system, including the 

object only, looks like 

trA(ρ0)=∑n‹θn|ρ0|θn›        
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where | θn ›- any complete set of device eigenstates. Thus, 

               trA(ρ0)=∑ |ψ› ‹θn|α0›‹α0|θn›‹ψ|=|ψ›‹ψ|,                                                                                 (2) 

Where the relation ∑ | θn ›‹ θn | = 1 and normalization condition for | α0 › are used. We have 

statistical operator correspondent to object state | ψ›. After measuring  there is a correlations between 

device and object states so the state of full system including device and object, is featured by a state 

vector 

|Ψ›=∑cie
iθi

|ψi›|α0›|.                                                                                                                                   (3) 

And the statistical operator is given by expression 

ρ0=|Ψ› ‹Ψ|=∑cicj
*
e

i(θi-θj)
|ψi›|αi›‹αj|ψj›.                                                                                                      (4) 

The partial track of this operator is equal 

 trA(ρ)=∑n‹θn| ρ |θn› |= 

=∑(ij)cicj
*
 e

i(θi-θj)
 |ψi›‹θn |αi›‹αj|θn›‹ψj|= 

=∑(ij)cicj
*
δij |ψi›‹ψj|                                                                                                                 (5) 

 (Since various states | αi › of device are orthogonal each other); thus, 

trA(ρ)=∑|ci|
2
|ψi›‹ψi|.                                                                                                                                 (6) 

We have obtained statistical operator including object only, featuring  probabilities |ci|
2 

for object 

states | ψi ›. So we come to formulation of the following theorem. 

The theorem 5.5 (about measuring). If two systems S and A  interact in such a manner that to each 

state | ψi › systems S there corresponds a certain state | αi› of systems A the statistical operator trA (ρ) 

over full systems (S and A) reproduces wave packet reduction for measuring, yielded over system S, 

which was before measuring in a state | ψ ›= ∑ici | ψ i›. 

 

Suppose that some subsystem is in mixed state, but full system including this subsystem is in  pure 

state. Such mixed state is named as improper mixed state. 

  

Appendix P. The theorem about decoherence at interaction with the macroscopic device. [18, 84] 

 

Let's consider now that the device is a macroscopic system. It means that each distinguishable 

configuration of the device (for example, position of its arrow) is not  pure quantum state. It states 

nothing about a state of each separate arrow molecule. Thus, in  the above-stated reasoning the initial 

state of the device | α0 › should be described by some statistical distribution  on microscopic quantum 

states | α0, s›;  the initial statistical operator is not given by expression (1), and is equal 

 

ρ0 = ∑ sps | ψ ›| α0, s› ‹α0, s |‹ ψ |.                                                                                                           (7) 

Each state of the device | α0, s › will interact with each object eigenstate | ψi›. So it will transform to 

some other state | αi, s ›. It is one of the quantum states of set with macroscopic description 

correspondent to arrow in position i; more precisely we have the formula  

е
iH τ / ћ 

(| ψ ›| α0, s›) =е
iθi, s 

| ψ ›| αi, s›.                                                                                                      (8) 
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Let's pay attention at appearance of phase factor depending on index s. Differences of energies for 

quantum states | α0, s ›  should have such values that phases θi, s (mod 2 π) after time η have been 

randomly distributed between 0 and 2 π. 

From formulas (7) and (8) follows, that at | ψ ›= ∑ici | ψ i› the statistical operator after measuring 

will be given  by following expression: 

ρ = ∑ (s, i, j) pscicj
*
 e

i (θi, S - θ j, s)
 | ψi ›| αi, s› ‹αj, s |‹ ψ j |                                                                             (9) 

As from (9) the same result (6) can be concluding. So we see that the statistical operator (9) 

reproduces an operation of reduction applied to given object. It also practically reproduces an operation 

of reduction applied to device only ("practically" in the sense that it is a question about "macroscopic" 

observable variable). Such observable variable does not distinguish the different quantum states of the 

device corresponding to the same macroscopic description, i.e. matrix elements of this observable 

variable  correspondent to states | ψi ›| αi, s› and | ψj ›| αj, s› do not depend on r and s. Average value of 

such macroscopic observable variable   A is equal 

tr (ρA) = ∑ (s, i, j) pscicj
*
 e

i (θi, S - θ j, s)
 ‹αj, s |‹ ψ j|A | ψ i ›| αi, s› = 

= ∑ (i, j) cicj
*
 ai, j∑s pse

i (θi, S - θ j, s)
                                                                                                             (10) 

As phases θi, s are distributed randomly, the sum over s are  zero at i≠j; hence, 

tr (ρA) = ∑ |ci|
2
aii = tr (ρ ' A).                                                                                                                (11) 

where 

ρ ' = ∑ |ci|
2
 ps | ψ i ›| αi, s› ‹αj, s |‹ ψ j |                                                                                               (12) 

We obtain statistical operator which reproduces operation of reduction on the device. If the device 

arrow is observed in position i,  the device state  for some s will be | αi, s ›. The probability to find state | 

αi, s› is equal to probability of that before measuring its state was | αi, s ›. Thus,  we come to  following 

theorem. 

The theorem 5.6. About decoherence of the macroscopic device. Suppose that the quantum 

system interacts with the macroscopic device in such a manner that there is a chaotic distribution of 

device states phases. Let ρ - a statistical operator of the device after the measuring, calculated with the 

help of Schrodinger equations, and ρ' - the statistical  operator obtained as a result of reduction 

application to an operator ρ. Then it is impossible  to yield such experiment with the macroscopic 

device which  would register difference between ρ and ρ '.  

 

For a wide class of devices it is proved that the chaotic character in distribution of phases 

formulated in the theorem 5.6  really takes place, if the device evolves nonreversibly at measuring. It is 

so-called Daneri-Loinger-Prosperi theorem [84]. 

 

Appendix R. Zeno Paradox. The theorem of continuously observable kettle which does not begin 

to boil in any way. [18] 

Theorem:     

Let A is an observable variable of the quantum  system, having eigenvalues 0 and 1. Assume, that 

measurings observable variable A are yielded in instants  t0= 0, t1..., tN = Τ on a time interval [0, T] and 
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the reduction is applied after each such  measuring. Let рп - probability of that measuring during the 

moment tn yields result 0. Then, if Ν → ∞, and so, that max (pn+1 - рn) → 0, 

 

pN-p0 → 0                                                                                                                                         (13) 

(So, if the system was some value of observable variable A at instant t = 0, it will have the same 

value of A also at instant t = T). 

The proof:  

Let Р0 be projection operator on characteristic space of observable variable  A, corresponding to an 

eigenvalue 0,  and let P1 = 1 - Ρ0  the projection operator on characteristic space with an eigenvalue 1. 

Let ρп be the statistical operator  characterizing the state of the system immediately before measuring at 

instant tn. Then, the statistical operator after measuring is given by expression 

ρп ' = Ρ0 ρп Ρ0 + P1 ρп P1                                                                                                                        (14) 

So the statistical operator characterizing the state of the system state immediately before measuring 

at instant tn+1, will be equal 

ρп+1 = e
-iHτn

 ρп ' e
iHτn                                                                                                                                                                                         

 (15) 

Where Η - a system Hamiltonian, and τп = tn+1 - tn. We note here, that if the operator ρп is equal to 

sum of k  terms of type | ψ> <ψ |, the operator ρп+1 would be sum no more than 2k such terms; since ρп 

= | ψ 0> <ψ0 |, it is follows, that the operator ρп  is the sum of  finite number of such terms. According 

to (15), we have 

 

ρп+1 = ρп ' - iτn [H, ρп '] +O (τn
2
).                                                                                                      (16) 

 

Since Р0
2
 =Р0, Р0 P1 = 0, so 

 

Ρ0 ρп+1 Ρ0 = Ρ0 ρп Ρ0 - iτn [Ρ0 H Ρ0, Ρ0 ρп Ρ0] +O (τn
2
).                                                                     (17) 

 

Hence, the probability of that measuring at instant tn would yield result 0, is equal 

pn+1 = tr (ρп+1 Ρ0) = tr (Ρ0 ρп+1 Ρ0) = 

=tr (Ρ0 ρп Ρ0) - iτn tr [Ρ0 H Ρ0, Ρ0 ρпΡ0] +O (τn
2
).                                                                              (18)                               

The second equality is valid because Р0
2
 = Р0. We will consider now that the operator Ρ0ρпΡ0 is equal 

to the sum of finite number of terms of type | ψ> <ψ | and for any operator X  the relation is valid: 

tr (X| ψ> <ψ |) = <ψ | Χ | ψ> = tr (| ψ> <ψ | Χ).                                                                                  (19) 

Hence, the commutator track in (18) is equal to zero, therefore 

pn+1 = pn+O (τn
2
).                                                                                                                              (20) 

Let's designate maximum value τп by τ (η = max ηn); then there is such constant value k, that 

pn+1 − pn ≤ kτn 
2 

≤ kττn                                                                                                                            (21) 

Therefore 

 



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At η→ 0.  
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Appendix S. Einstein-Podolsky-Rosen paradox [18]. 

 

Such point of view may be possible that difficulties considered in quantum mechanics are related 

exclusively by that the quantum mechanics vector of a state. It does not give full information about a 

system state: really there are other variables  hidden from us, named as hidden variables. Its values 

completely characterize a state of system and predict its future behavior more in details, than the 

quantum mechanics. Serious  argument of existence of such additional hidden variables has advanced 

by Einstein, Podolsky and Rosen in 1935. We will consider an electron and a positron pair born 

simultaneously in a state with the full spin 0. This spin  state represents an antisymmetric combination 

of spin states of two particles with a spin 1/2, i.e. it looks like 

  ||||
2

1
|

                                                                                                                (22) 

where | ↑ ›and | ↓› - the one-particle eigenstates of a component  of a spin sz with eigenvalues +1/2 

and-1/2 accordingly,  and in a two-particle spin state (22)  spin state of an electron is noted by the first 

factor. 

As the state with the zero angular moment is invariant with respect to rotations, it should look like 

(22)  independently on axis direction. Thus, it is possible  to note also 

  ||||
2

1
|

                                                                                                                                                  (23) 

Where | ← ›and | →› are the one-particle eigenstates  of a component of a spin sx. 

Let's assume that the electron and a positron move in opposite directions and achieve  very large 

distance between each other. Then measuring z component of electron is yielded. Thus, measured 

observable variable is sz(e
-
) of full system; after such measuring  the system state will be projected on 

some correspondent eigenstate  of  this observable variable: if measuring gives value +1/2 after 

measuring the system would transfer in a state | ↑ ›| ↓›. It means that the positron will be in a state | ↓ 

›and measuring z-component of his spin sz(e 
+
) with the full definiteness  will give value -1/2. We can 

note that this information about positron is obtained by means of the experiment yielded over electron. 

It is at great distance from positron and, consequently, can not influence it. Einstein, Podolsky and 

Rosen concluded therefore that the result of the experiment about the positron state (namely that sz (e 
+
) 

=-1/2) should be a real fact which took place also before experiment with the electron. 

Let's assume that electron spin is measured not for z-axis, but x-axis. Then from 

(23) it follows that the system state will be projected either on state | ← ›| →› or on a state | → ›| ←›.  

So the positron would have some certain value for its x-component. 

sx (e 
+
). Such state of positron also should  exist before last experiment. Hence, before the 

experiment the positron had certain values both sz (e 
+
) and sx (e 

+
). But they are incompatible 

observable variables, and they haven’t simultaneous eigenstates:  no such quantum mechanics state 

exists where both of them could have certain values. Einstein, Podolsky and Rosen made from here 

conclusion that quantum mechanics description is incomplete and there are "elements of realities" 

which the quantum mechanics does not consider. Let's consider quantum mechanics explanation of 

EPR paradox. After the experiment over electron, full system has really transferred to eigenstate | ↑ ›| 

↓› if it was measured value +1/2 for sz(e
-
) , or to eigenstate |→ ›| ←› if it was measured value +1/2 for 
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sx(e
-
) . It means that after experiment  the positron is in certain state, either | ↓ › or | ←› accordingly, 

and this state is different from positron   state before experiment. But it does not mean, that  the 

positron state  has been changed by the experiment over electron as the positron at all had no any  

certain state before experiment carrying out. If nevertheless to insist that the positron should be 

featured somehow  separately it is necessary to be converted to its statistical operator. According to 

(22) and (23), this operator (before experiment) is given by expression 

 

 


||||
2

1||
ee

tr

                                                                             (24) 

 ||||
2

1 
                                                                                                              (25) 

  

I.e. it is equal to unit operator in  two-dimensional positron spin space multiplied by 1/2. We will 

consider now a statistical operator of a positron immediately after  experiment but before the 

information about its result can reach positron. If  the component measured in experiment with electron 

was sz then the positron state would be or | ↑ ›, or | ↓› with equal probability, and the statistical operator 

 would have an appearance (24). If the component measured in experiment with electron was sx the 

positron state would be or | → ›, or | ←› with equal probability, and the statistical  operator would have 

an appearance (25), i.e.  the same, that in  the previous case and before experiment with an electron. 

Though these three situations (before experiment, after experiment on  measuring sz and after 

experiment on measuring sx) are differently featured with use of positron states, all of them correspond 

to the same statistical operator, and between them there is no experimentally observable difference. 

Thus, there is no experimentally observed interaction between electron and far positron, i.e.  EPR 

experiment cannot be used for information transfer with velocity more than light velocity. 

 

Appendix T. Bell's inequality. [18]  

 

We will show now that the instantaneous interaction is inevitable  for any theory with hidden 

variables which leads to the same consequences as quantum mechanics does. 

Let's consider a situation in which  experiments are carried out over two particles separated in space, 

and we will deduce consequences from an assumption, that  results of experiment carried out over one 

of particles, are depend just on this experiment. They do not depend on results of any experiment 

carried out over other particle. This property is named locality.  It will be shown below that the locality 

requirement results in such restrictions on correlations between results of experiments over different 

particles which contradict  quantum mechanics predictions. 

Basically between a locality and determinism no connection exists.  Let’s assume that probabilities 

are defined by some set of variables. We will designate this set by symbol λ (in case of two particles 

separated in space these variables can consist of the variables featuring individually both  particles, and 

the variables featuring general devices, influencing simultaneous on both particles). Then for each 

experiment Ε it is possible to specify probability p Ε (α | λ) of measuring α when variables have values 
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λ. The theory will be local if experiments Ε and F, which are separated in space, are independent in 

sense of probability theory. From here we conclude that 

      |p|p|p FEFE                                                                                             (26) 

Any local theory which reproduces all  predictions of quantum mechanics concerning EPR 

experiment for two separated particles with a spin 1/2, will be equivalent to the deterministic theory. 

Let’s suppose that electron and positron are separated by a very large distance. Also let in experiment Ε 

the component of electron spin is measured in some direction, and in experiment F the component of 

positron spin is measured in the same direction. We will designate  arrows ↑ and ↓ two possible 

observed dates. Then, as the full spin is equal to zero, we know, that  experiments Ε and F will always 

yield opposite results; according to probability theory, 

0)()(   FEFE pp
                                                                                                                          (27) 

Let ρ (λ) be the probability density characterizing probability that variables have values λ; then  the 

composite probability (27) is equal to 

 

  



dpp

dpp

FE

FEFE

)|()|(

)()(







 

                                                                                                                        (28) 

Since full probability is equal to zero, an integrand,  being nonnegative, should be  zero everywhere. 

Hence,  

either ρ (λ) =0 or pE (↑ | λ) = 0 or рF (↑ | λ) =0.                                                                                (29)  

Similarly we conclude, that 

either ρ (λ) =0, or pE (↓ | λ) = 0, or рF (↓ | λ) =0                                                                               (30) 

 

As experiment Ε has only two results ↓ and ↑, we have the equivalent statements 

1)|(0)|(   EE pp                                                                                                                       (31) 

From (29) - (31) follows, that if ρ (λ) ≠ 0 all four probabilities should be equal either 0, or 1. Hence, 

for all values λ which are possible actually,  results of experiments are completely defined by value λ. 

Thus, if we assume that the probability distribution of hidden variables is not influenced by type of 

experiment yielded over particles we can conclude  that just deterministic theories should be 

considered. 

Let's assume that each of two separated particles can be subjected by one of three experiments A, B, 

C, each of which can give only two results ("yes" or "no"). Then in the deterministic local  theory the 

result of experiment A with a particle 1  is defined by property of system which we will designate а1: it 

is a variable which can take values + and -. We have also similar variables b1, c1, a2, b2, с2. We assume 

now that experiment A always gives opposite values for two particles; then а1 = -a2. We will similarly 

assume that experiments B and C yield opposite results too for both particles, i.e. b1 = -b2 and c1 = -c2. 

Let's consider now particles which are prepared with the fixed probability of values sets a, b and c.  

Suppose Р (a =1, b =1) designates probability that the particle has the specified values a and b. Then 

 

Р(b = 1, с = -1) = Р(а =1, b = 1,с = -1) + Р(а = -1,b = 1, с = -1) ≤ Р(а =1, b = 1) + Р(а = -1, с = -1)             (32) 

                                                                                                                                                               

Hence, when pairs of particles are prepared with opposite values a, b and c, we have  
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Р (b1 = 1, с2 = 1) ≤ Р (а1=1, b2 =-1) + Р (а1 =-1, с2 = 1).                                                                       (33) 

Each item in the right part of this inequality gives probability of result of experiment carried out 

over various particles; therefore the inequality can be checked even in case when A, B, C experiments 

cannot be carried out simultaneously over a single particle. 

The probabilities calculated according to rules of quantum mechanics in the following case do not 

satisfy inequality (33). Indeed, we assume that two particles (an electron and a positron) with spin 1/2 

are prepared in state with full spin equal to 0; then we know that measuring of a component of a spin in 

any given direction will yield opposite results for both particles. Let A, B, C designate experiments on 

measuring of components of a spin along three axes laying in one plane, and let the angle between axes 

A and B is equal θ, and the angle between axes B and C is equal υ. We will calculate probability P (b1 

= 1, с2 = 1) entering into the left part of the inequality (33); it should be interpreted as probability that 

both measurings of components of spins of particles 1 and 2 along axes, the angle between which is 

equal to υ, will yield the same outcome +1/2. We take as an axis for a particle 1 axis z; Then if at 

measuring of a component of a spin of a particle 1 along the specified axis we would obtain value 1/2 

after measuring  the particle 1 will transfer in an eigenstate | ↑>, and a particle 2 - in an eigenstate | ↓>. 

Eigenstates of the measuring yielded over a particle 2, are obtained by rotational displacement of states 

| ↑> and | ↓> on an angle υ (we will tell round an axis x); thus,  the eigenstate corresponding to an 

eigenvalue + 1/2, looks like 

    

     
    
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                                                                      (34) 

Hence, the required  probability is equal to 

P (b1 = 1, с2 = 1) =
1
/2 | ‹+ (θ) | ↓› |

2
=

1
/2 sin

2 
(
1
/2 θ)                                                                               (35) 

(Since probability of +1/2 for a particle 1 is equal 1/2). It is similarly possible to calculate entering 

into (33) probabilities 

Ρ (a1 = 1, b2 =-1) = 
1
/2 cos

2
 (

1
/2 θ) 

And 

Ρ (a1 =-1, с2 = 1) = 
1
/2соs

2 
[

1
/2 (θ + θ)].  

Thus, the inequality (33) is reduced to an inequality 

sin
2
 (

1
/2 θ) ≤cos

2 
(
1
/2 θ) + cos

2
 [

1
/2 (θ + θ)], 

Or to an inequality 

cos θ + cos θ + cos (θ + θ) ≥ - 1,                                                                                                     (36) 

Which are not fulfilled at θ = υ = 3 π/4. As a result  we come to the following theorem. 

The theorem 5.8 (Bell’s theorem). Let’s assume that two separated particle can be subject to one 

of three two-valued experiments. The same experiment yielded over both particles always yields 

opposite results. If particles are featured by local theory and experiments does not influence particles 

properties probability distributions then experiments results probabilities satisfy to an inequality (33). 

       This inequality is not fulfilled in quantum mechanics for a system of two particles with a spin 

1/2, having the full spin equal 0. 

 

Appendix U. de Broglie - Bohm theory of wave-pilot [18]. 
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Typical features of quantum mechanics (in particular, the interference effects) make building-up 

theory of hidden variables to be a very hard problem. Some time ago the theorem (J. von Neumann) 

[15] seemed to be proved that no theory of such type can reproduce all consequences of quantum 

mechanics. But this proof appeared erroneous as the following counterexample shows. We will 

consider a separate  simple particle, moving in the potential of V (r). We assume,  that the particle is 

featured in an instant t not only a wave function ψ (r, t), but also some vector q (t), and the wave 

function satisfies to a usual Schrodinger equations 

.),,(
2

2





zyxU

mt
i




                                                                                                     (37) 

And the vector q satisfies to the equation 

),(

),(

tq

tqj

dt

dq




 

where j and ρ are  density of probability current and  probability density: 

  Im
m

j


,    ρ = |ψ|
2
.                                                                                          (38) 

Let's assume now that in instant t = 0 it is large number of such particles exists, each of which is 

featured  by the same wave function ψ (r, 0), but the different vector q. 

Let portion of particles for which value of this vector is in volume dV, containing a point q, is equal 

to ζ(q, 0)dV; let this portion in instant t is equal ζ (q, t) dV. Then, considering q as the particle 

coordinate, it is possible to consider all collective  of particles as fluid with density σ and a field of 

velocities u = j/p according to (37). The last values should satisfy to the equation of continuity 

  0



u

t



                                                                                                                                   (39) 

i.e. 


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












 j

t
                                                                                                                                     (40) 

    The equation of continuity has the single solution σ (r, t) for given σ (r, 0), j (r, t) and ρ(r, t). This 

equation  have solution σ = ρ. Thus the equation (40) is equation of continuity. It has been shown, that 

this equation is a consequence of a Schrodinger equations (37). Hence, if distribution of values q for 

particles  is featured at t = 0 by function ρ it  would be characterized by this function at all future 

instants. 

Thus, we can conclude that each particle with wave function satisfied to Schrodinger equations (37) 

has certain coordinate q in space and any our observational device creating particles with wave 

function ψ, yields particles with certain distribution of their coordinates; the portion of these particles   

| ψ (q) |
2
dV is in volume dV near point q. It is valid if the observational device creating particles with a 

wave function ψ, with probability | ψ (q) |
2
dV yields particles in volume dV. As values ψ and q evolve 

in time, according to the deterministic equations (37), (38), such distribution will be correct for all 

instants if it was correct during the initial moment. 

It is possible to extend also such theory on systems from several particles, but thus there is one 

obvious difficulty. We will consider, for example, system of two  particles. Variables will be q1 and q2, 
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and the two-particle wave function looks like ψ(r1, r2). As equations of motion  it is necessary to 

consider a two-particle Schrodinger equation and two equations 


11 j

dt

dq
 ,      


22 j

dt

dq
 , 

Where 

  1Im 
m

j


,   2Im 
m

j


, ρ = |ψ|
2
.  

 

   Here j1 and, consequently, dq1/dt can be function q2:  motion of the first particle depends on 

position of the second particle. Thus, there is the instantaneous interaction between two particles, and it 

should be observed even in that case, when there will be no potential V (r1, r2) for interaction between 

particles. It is the result of correlations between the particles, arising in the formalism  of a quantum 

mechanics operating with wave functions. In particular,  wave EPR function  shows such correlations 

between separated particles. 

 

 

Appendix V. Escher swirl where all levels are crossed.  [3] 
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Figure 28. “Picture gallery” Escher M.K. (lithography 1956) 

    Extremely beautiful and at the same time strange disturbing illustration of a cyclone "eye"  

generated by Entangled Hierarchy is given by Escher in his "Picture gallery" (fig. 28). On this lithograph 

the picture gallery where a young man is figured, looking at a ship pattern in harbour of a small town, 

maybe Maltese, judging by the architecture, with its turrets, calottes and flat immovable roofs, on one of 

which a boy sits on the sun; and two floors down some woman - may be mother of this boy - looks from a 

window of the apartment arranged directly over the picture gallery where there is a young man, looking 

on a ship pattern in harbour of small town, maybe, Maltese - But that is it!? We have returned again to 

the same level with which began, though logically it could not happen in any way. Let's draw the 

diagram of that we see on this pattern (fig. 29): 
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Figure 29. An abstract diagram of Escher’s "Picture gallery" (Fig. from [3]) 

 

 

On this diagram three aspects of insertion are shown. The gallery is physically included in a city 

("insertion"); the city is artly included in a pattern ("image"); the pattern mentally is included in the 

person ("representation"). Though this diagram can seem exact, actually it is arbitrary, because amount 

of the levels shown on it is arbitrary. Other variant of the upper half of diagram (figure 30) is presented 

below: 

 

 

Figure 30. A short version of the previous diagram. (Fig. from [3]) 

 

We have cleaned the city level: though conceptually it is useful it is possible not to use it. The Fig. 

30 looks the same as the diagram "Drawing hands": it is a two-stage Strange Loop. Dividing signs are 
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arbitrary, though they seem us natural. It is visible more clearly from even more simplified diagram of 

"Picture gallery": 

 

 

Figure 31. Following shorting of the previous diagram in figure 29. (Fig. from [3]) 

 

 

The paradox of a pattern is expressed here in the extremely form. But if the pattern “is included in 

itself” is the young man “included in itself” too? This problem is answered with fig. 32. 

 

 

Figure 32. Different shorting of the previous diagram in figure 29. (Fig. from [3]) 
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Here we see the young man in himself, in that sense what is obtained from connection of three 

aspects of "interior". 

 

 

Whether there are viewers looking at “Picture gallery”, tightened "in themselves"? Actually, it does 

not happen. We can avoid this swirl because we are out of system. Looking at the pattern we see things 

imperceptible for the young man, - for example, Escher’s subscript “МСЕ” in the central "blind stain". 

Though this stain seems imperfection, most likely, the imperfection consists in our expectations, as 

Escher could not finish this fragment of the pattern to conflicting to rules on which he created it. The swirl 

centre remains - and should remain - incomplete. Escher could make its arbitrarily small, but it could not 

be saved of it absolutely. Thus, we, while looking outside, see that "Picture gallery" is incomplete, that 

the young man on the pattern can not see. Here Escher gave an art metaphor of the Gödel Theorem about 

incompleteness. Therefore Escher and Gödel are so tightly interlaced in my book.  
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