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Abstract

Natural system structure modelli ng on the basis of category and functor theory makes it

possible to formulate extremal principles of system modelli ng and to derive functionals for setting up

variational problems in the ecology of communities.

Variational modelli ng allows one to predict and understand many features of stationary

states of communities of many species that consume mutually irreplaceable resources.

A solution to the variational problem, that is, the species structure formula, allows one to

calculate the abundance of a member species of a community as a function of the resources which

restrict its development and the demands of individuals for these resources. It is possible as well to

solve the inverse problem: given the population abundances and the amounts of limiting resources,

estimate the demands. One can also calculate the partial consumption of any resource by each

population, given its consumption by the whole community.

Analytical consequences of the variational modelli ng also suggest interpretations and

analogues of the functional to be extremized: entropy, free energy, exergy, complexity, information,

self-organization, expansion, degree of structuredness, degree of stabili ty, diversity and the limiting
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resources consumption. The origin and the ecological meaning of the model constructs is discussed,

including rank distributions, diversity indices and Lagrange multipliers.

The adequate consequences of variational modelli ng have been verified by numerous

experimental data on laboratory and natural (in vitro and  in situ) algocoenoses.

Keywords: Variational modelli ng; Extremal principles; Limiting rules; Biogenic manipulation in

algocoenoses.

1. Introduction

A conventional way of formal modelli ng of system dynamics is to employ differential

equations. These equations are either guessed or obtained phenomenologically, by formalizing

empirical laws and using plausible reasoning. There is also an approach which postulates, instead of

equations, a variational principle and the form of a functional to be extremized. The equations

themselves then follow from solving the appropriate variational problem. Such an approach is used

both in the problems of theoretical ecology (e.g. Lotka, 1922; Margalef, 1958; McArthur, 1969,

1970; Odum, 1971; Samuelson, 1974; Insarov, 1975; Cohen, 1979; Schmelzer et al., 1981:

Semevsky and Semenov, 1982; Lurie et al., 1983; Straškraba and Gnauck, 1985; JØrgensen, 1986,

1988, 1995; Mauersberger and Straškraba, 1987; Svirezhev, 1991; Zeide, 1991; Nielsen, 1995;

1997; Patten, 1995; Washida, 1995; Webb, 1995; Bendoricchio and JØrgensen, 1997) and in solving

a wide range of general biological problems. One of the unsolved problems is to deepen the

traditional approach, namely, to try to find arguments making it possible to derive rather than guess

the functionals able to form a basis for variational modelli ng in ecology.

It is well-known that, for example, in theoretical physics the functionals are frequently

guessed with the aid of such considerations as their invariance with respect to the transformations

admitted by the physical principles. It is suggested to look for such arguments applicable to

biological systems of many organisms.
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The purpose of the present publication is to bring to the readers' judgement the up-to-date

theoretical and applied results of variational modelli ng in the ecology of communities. It is proposed

to judge about the extent to which the ideas have been realized by the adequacy of the resulting

variational model and by the predictive abili ty of its analytical consequences when applied to the

description of important ecological principles.

2. The experimental context of the studies

The ecological applications of the model have been investigated for groups of organisms

which need several mutually non-interchangeable resources. These can be, for instance, communities

of autotrophic organisms consuming carbon, nitrogen, phosphorus, sili con, energy of light, etc., or

communities of bacteria growing on several substrates which are simultaneously necessary for them.

The point under study is the existence of communities of several species of organisms competing for

common resources.

The model describes the growth of organisms under the condition of a nonrenewable

resource deposit. In vitro, this situation corresponds to batch cultivation rather than continuous one.

I would note that the continuous cultivation, unlike the batch one, not only renews the nutrient

deposits in the environment, but also eliminates biomass of all the species of the community in the

same proportion, depending on the flow velocity. This circumstance manifests an essential difference

between the continuous cultivation and the processes that take place in natural conditions, where

biomass elimination is always species-dependent. On the other hand, the batch cultivation may serve

as a prototype for some natural systems, such as reservoirs whose nutrient deposits are refill ed once

or twice a year, when the enriched waters from under the thermocline are mixed with the water

masses of the photic layer (Odum, 1983).

The period under study is that between inoculation and growth termination, when the latter

is caused by exhausting one of the resources rather than some other reason (such as auto-toxication,

allelopathic interactions, etc.).
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It is taken into account that the growth of organisms is determined not only by the resource

deposits in the environment, but also their intracellular deposits. Namely, one of the physiological

mechanisms of the effect of the deposits upon the growth is meant: cellular fission terminates when

the intracellular deposit of one of the mutually irreplaceable resources reaches a certain species-

dependent minimal value (Droop, 1973). A special experimental development is necessary for taking

into account this circumstance (Levich and Artyukhova, 1991).

The model verification and the approbation of the resulting methods of community

structure control were carried out using the data about laboratory and natural phytoplankton

communities. The materials and methodologies, which served as a basis for obtaining these data, are

presented in the sections of the paper where the corresponding experiments are mentioned, in order to

rid the reader of returning to a previously read material.

3.Model description

I build a model of a community of organisms where groups differ from one another in

physiological demands for resources (these may be populations of different species or other

physiologically homogeneous groups of individuals). It is convenient to describe such a community

in terms of a set of n elements, split into w non-intersecting classes, with the number ni of elements in

a class (i w n ni
i

w

= =
=
∑1, ;
1

), i.e., by the mathematical structure of partitioned sets. The

partitioning classes just correspond to physiologically distinct groups of organisms. I will call the set

of abundances  
�

� = {n1, n2,..., nw} of the member species of the community the state of the

community.

Due to this circumstance, I use a consequence of the above local formulation of the

extremal principle: the system proves to be in a state with the most extremal structure (within the

limits admitted by the resources).
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Consider a community of unicellular organisms, where death and fission of cells are

admitted, but their fusion and introduction from outside are forbidden. In this case, a specific

invariant of the partitioned sets structure is (Levich, 1995c)

( )J
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n

i
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i
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=
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,

where n ni
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=
∑
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is the total abundance of the community. The logarithm of this invariant, called

the generalized entropy (Levich, 1995c), is

( ) ( )H lnJ ln
� �
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(a connection between the invariants and Boltzmann's expression for the entropy and the diversity

indices is discussed in more detail i n Section 4.4).

There appears a variational problem of finding a conditional extremum:

( )H ln ln max

;

, , ;

, , .

�

n n n n n

n n

q n L k m

n i w

i i
i

w

i
i

w

i
k

i
i

w
k

i

= − + ⇒

=

≤ =

> =

















=

=

=

∑

∑

∑

1

1

1

1

0 1

;

(1)

Here n and ni are the final abundances to be found, Lk is the sum of the initial content of the resource

k in the environment and in the cells (Lk ≥ 0), qi
k are the final cellular quotas of the species i with

respect to the resource k, m is the whole number of mutually irreplaceable resources consumed by

the community and w is the number of species in the community. I am stressing that the restrictions

in this problem are formulated as inequali ties. A reasoning for the resource limitation is the necessity

of observing the conservation laws for the resources consumed by the community from the

environment.



6

4. Variational modelling theorems and their ecological consequences

4.1. Stratification Theorem

Formulation of the theorem (Levich et al., 1994)

The whole resource factor space Lk

k

m

=
∏
1

splits (stratifies) into m2 1−  non-intersecting

domains (strata), each stratum corresponding to one of the subsets of the set of resources consumed

by the community. For each stratum SJ, where J ≠ ∅ is a subset of the set of resources {1,2,...,m},

one has:

•  a solution to the problem (1), ( )n Li

�

, where 
�

L   ≡  {L1, L2,..., Lm} depend on only

those Lk for which k ∈ J (note that, as is indicated in Section 4.2, this solution to (1) exists and is

unique);

•  on this solution, the nonstrict inequalities q n Li
k

i
i

w
k

=
∑ ≤
1

 become strict equalities for

all k ∈ J and strict inequalities for all k ∉ J.

The theorem yields an algorithm for calculating the strata for a set of quotas qi
k specified

in the community. Figs.1 and 2 present the stratification of the environmental factor space for m = 2

and m = 3. The Stratification Theorem implies a reduction of the problem (1) to the problems
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;
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(2)

formulated for any J ⊂⊂ {1,2,...,m}.
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The Limiting Link Rule

The biological interpretation of the Stratification Theorem leads to the Limiting Link Rule

for communities of many species, whose populations compete for several resources (Levich et al.,

1993b). I will call li miting resources the resources which are entirely consumed by the community

from the environment, i.e. those for which the balance inequali ties from the problem (1) turn out to

be equali ties. According to the Stratification Theorem, from a specified set of resources 
��

, entirely

consumed are (i.e. restrict the growth of the community) those resources which belong to the set J

that identifies the stratum SJ, the specified vector 
��

 belongs to. Thus the Stratification Theorem

makes it possible to rigorously predict the resources which limit the growth of a community with a

specified set of quotas qi
k .

For monocultures the Limiting Link Rule coincides with Liebig's minimum principle

(Liebig, 1840), namely: for L1/L2 ≤ q1/q2 the factor 1 is limiting (Fig. 3). This condition is equivalent

to  L1/L2 < q1/q2, i.e., the limiting resource is the one for which the abundance reached on its deposit

is minimal (i.e. the one which “ is in its minimum” in the above sense). I would like to note that,

formally, the problem (1) is not defined for w = 1, since in this case the functional becomes a

constant. But the problem may be solved in this case just on the basis of the resource limitations

which give

n L q k mk k
1 1 1≤ =, , ,

i.e., { }n L q
k

k k
1 1= m in , or Liebig's minimum principle, is realized.

For communities of more than one species, according to the Limiting Link Rule, there are

both domains where the growth is restricted by a single factor and those with several limiting factors,

in particular, all the factors. The latter situation is called in the agronomical li terature Mitscherlich's

"Law of joint action of factors" (Mitscherlich, 1909). Experiments with phytoplankton (Droop,

1973; Rhee, 1978; Ahlgren, 1980; De Groot, 1983) demonstrate the predicted switching of the

limitation.
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The domains of the limitation when the community growth depends, for example, on two

resources, L1 and L2, is calculated in the following way (Levich et al., 1993b). Let x0 be the unique

root of the equation xq
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 determine the boundaries of the

domain ( ) ( )ν ηq L L q
i
k

i
k≤ ≤1 2 , where the community growth is limited by both resources L1

and L2. When ( )L L1 2 < ν q
i
k , the first factor is limiting, and when ( )L L q

i
k1 2 > η , the second

one. Table 1 gives an example of calculating the nature of limitation for an algocoenosis whose

growth is potentially limited by nitrogen and phosphorus. Examples of calculations for other

coenoses and for m > 2 are given in the paper cited above (Levich et al., 1993b).

I propose the description of a direct experiment for verifying the Limiting Link Rule. For

an algocoenosis with known demands of the species, qi
k  (i w k m= =1 1, ; , ), one puts

m2 1−  flasks with initial values �L 0
J  of the set of consumable resources belonging to each stratum

J. Once the growth has stopped, one pours out the content of each flask to m2 1−  new flasks and

adds to each of them one of the sets of resources J. The renewal of growth in a secondary flask with

the addition of a minimal (by inclusion) set J indicates that just this set had been the limiting one in

the corresponding primary flask. Such an experiment has been performed (Levich and Lichman,

1992) with a community of species of micro-organisms (the green algae Scenedesmus quadricauda

(Turp.) Breb., Ankistrodesmus falcatus (Codra) Ralfs and the cyanobacteria Anabaena variabilis

(Kutz), with different initial environmental concentrations of nitrogen and phosphorus. The quotas of

the species, qi
N  and qi

P , were determined in monocultures of the same species using a special

methodology (Levich and Artyukhova, 1991). The results of the experiment coincided with the
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predicted sets of limiting factors (only nitrogen, only phosphorus or jointly nitrogen and phosphorus)

for different initial values of the environmental concentrations.

Selection of species for balanced utilization of multicomponent substrates

The species selection problem is solved by two stages (Zamolodchikov and Levich, 1992).

One should first choose the quota matrix qi
k  in such a way that the boundaries of the total

consumption stratum embrace the specified vector of environmental resources (for instance, a cone

with the boundaries ( )ν qi
k  and ( )η qi

k  for m = 2 and the vector 
��

 in Fig. 1). At the second stage,

given the quota matrix qi
k , one should choose real species with the necessary demands (quotas).

Such a problem may be useful for biological decontamination of waters, for composing cultivation

media, etc.

4.2. Solution of the variational problem

Species structure formula. Sufficient and necessary conditions of an extremum

The problems (2) have the solutions

( ) { }n expi
J

� � �
L n qi= − λJ J , (3)

where the vectors 
�
LJ , 

�
λJ  and �qi

J  have components j from the set J which identifies the stratum

containing the vector 
�
LJ . The Lagrange multipliers 

�
λJ  and the total abundance n are sought as

functions of the resources 
�
LJ that are entirely consumed in the stratum SJ, from the algebraic

equations
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It has been shown (Levich et al., 1994) that a solution to (3) always exists, is unique and

realizes a maximum of the functional H n( )
�

. In applied ecology, the species structure formula (3)

makes it possible to calculate quantitatively:

•  the abundances ni and n, given the resource deposits Lk and the demands qi
k ;

•  partial environmental resource consumptions ∆ ∆ Li
k qi

k  n= i
 by the populations of

the community, given the total resource consumptions ∆Li
k   (k ∈ J) by the whole

community ∆ ∆L Lk
i
k

i

w

=
=
∑
1

;

•  partial ∆~Li
k  and total ( ∆~Lk ) real consumptions of the resources which are not included

in the stratum SJ (k ∉ J);

•  quotas of species qi
k , given the population abundances ni and the consumptions Lk  (in m

series of experiments for m resources).

Adequacy of the model

The species structure formula explains qualitatively the origin of rank distributions of the

abundances ni of populations in communities. The origin of rank distributions is discussed in more

detail in Section 5.1.

In an experiment with a polyculture of 10 species of green algae (Chlorella vulgaris

(Bejerink.), Scotiella nivalis (Fritsch.), Chromochloris cinnoborina (Chodat.), Scenedesmus

quadricauda (Turp.), Scenedesmus bijugatus (Lagerh.), Scenedesmus obliquus (Kruger.),

Ankistrodesmus acicularis (Korschik.), Ankistrodesmus braunii (Brunnth.), Stichococcus mirabilis
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(Lagerh.) and Chlamydomonas humicola (Luksch.)) the abundances and biomasses of the species,

the primary production and the concentrations of mineral forms of nitrogen and phosphorus were

measured within 70 days in several repetitions. The demands of the cells for phosphorus was

measured in monocultures of the same species. The algae grew in the storing regime, without

bubbling, on Beneke' s medium. The content of the nutrients in the medium was maintained in such a

way that the algal development be limited by environmental phosphorus. At the stationary stage of

the growth, the distribution of cells' abundances obeyed the species structure formula

{ }n n qi i= −exp λ P  with a multiple correlation factor of 0.97 (Levich et al., 1986).

The same set of experiments, along with sixteen other ones, was, in addition, analyzed with

the aid of the rank criteria of sample adequacy and cellular quota calibration (Zamolodchikov et al.,

1993). The sets of experiments differed from each other in the choice of taxons (four to ten species in

a polyculture) and in initial concentrations of nitrogen and phosphorus in the medium (Levich et al.,

1997). When the growth is limited by a single resource, the place of a species in the decrease-ranged

row of abundances at the stationary stage is entirely determined by the cellular quota rank of the

species with respect to the limiting resource (the greatest abundance corresponds to the smallest

quota). An attempt was made to pick out, within the experimental error, a unique set of cellular

quota ranks measured in the experiment, in such a way as to reproduce the experimental abundance

ranks in already all the sets of experiments where the growth was limited by a single resource. I

succeeded to do so with Spearman' s rank correlation factor of 0.92 to 1.00 (Table 2). For sets of

experiments with more than one limiting factor, the adequacy of the species structure formula was

verified in the following way. From the species' abundances measured in a pair of sets of

experiments, the cellular quotas of nitrogen and phosphorus were calculated; then, using these

calibrated quotas, the species' abundances were computed for all the other sets of experiments, and

the results were compared with the experimental values. The comparison showed that the computed

abundances coincide with the experimentally measured ones within the experimental errors.
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Invariance of the species structure formula

The set of algebraic equations (4), after exclusion of the variable n, is written in the form
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whence it follows that the Lagrange multipliers λk and, simultaneously, the relative abundances

{ }n n qi i= −exp
� �

λ  depend on only ratios of the resources. This fact makes it possible to control

the species' abundances with the aid of environmental resource ratios (see Section 4.3).

The species' relative abundances ni/n are also invariant with respect to similarity

transformations of the quotas 
iq

�

(Levich et al., 1994), therefore the species structure formula

allows one to calculate only ratios of quotas of different species with respect to each resource, but

not their absolute values (this fact is also important for model calibration).

The species structure formula makes it possible to find the resource dependence of the total

abundance of the community and its entropy diversity index (Levich et al., 1994):

( ) ( )
n

L
H

Lj

j

j

j
= =∈ ∈

∏ ∏
J

J

J

Jf ; g ,
� �

γ γ

where J is the number of limiting resources corresponding to the stratum SJ; γ j
j

r

L

L
=  are the

resource ratios, f and g are some functions.

Examples of the species structure formula (justifications of the calculations are contained in the

papers: Levich, 1980; Levich et al., 1994)

1)  m = 1; qi = q1i; ni = 0,36
L

q
e i

1

0 57− .  — an exponential distribution of abundances.
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2)  m = 1; qi = q1(1 + lni); ni = 0,23
L

q
i

1

1 28− .  — a hyperbolic distribution of abundances. Fig. 4

ill ustrates the exponential and hyperbolic rank distributions of species' abundances;

3) m = 2; w = 4. I will present the experimental values of nitrogen and phosphorus quotas for one of

the sets of experiments with laboratory algocoenoses (dimension: 10-9 mg/cell ):

q q q q

q q q q

N N N N

P P P P

1 2 3 4

1 2 3 4

3 94 0 91 169 0 41

079 0 28 0 22 0 21

= = = =

= = = =

. ; . ; . ; . ;

. ; . ; . ; . .

The results of numerical calculations according to the species structure formula are presented in Fig.

5.

4)  m€=€2 ; q q i q q ii i
1

1
1 2 2

1
2 2= =, (a two-factor “quadratic” model). The results of the

calculations are presented in Fig. 6.

5)  m = 3 ; w = 4. I will present the experimental values of the demands for the energy of light (units

by convention, Bulgakov, 1990) for the same set of experiments for which the demands for

nitrogen and phosphorus have been given in Example 3:

q q q qE E E E
1 2 3 43 24 164 114 0 84= = = =. ; . ; . ; . .

The results of the calculations are demonstrated in Fig. 7.

4.3. Theorem of Maximum Species Abundances

Analytical result

As has been indicated above, the set of equations (5) implies that the relative abundances

of the species depend only on the ratios of the environmental resources which limit the growth. It has

been proved (Levich et al., 1993a; Alexeyev and Levich, 1997) that the relative abundance of a

species takes its greatest possible value if the environmental resource ratios coincide with the ratios

of the species' demands for the same resources. Fig. 8 ill ustrates this result by a numerical

calculation for the case m = 2, w = 4 and the experimental values of the quotas.

Phenomenological verification of the theorem
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There is a number of well-established phenomenological dependences that reflect the

empirical concepts of phytoplankton growth and consumption. They include, in particular, the

Monod law (Monod, 1942) for resource absorption from the environment:

dn dt L M LL∼ + , Droop' s law (Droop, 1973) for the dependence of the growth rate on the

intracellular concentrations of substances: dn dt q qL L∼ −1 m in , the matter conservation law, etc.

These dependences gave rise to the creation of simulative models taking into account the empirical

generalizations. Since such models incorporate realistic data descriptions, these model should, like

“big approximation formulae”, implicitly describe the “correct” behaviour of the communities. On

the basis of these premises, I have tested the hypothesis of the controlli ng effect of the growth-

limiting resources using the following simulative model (JØrgensen, 1980):
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for w = 3 and 4; m = 2 (Levich and Lichman, 1992). In addition to the previously introduced

notations, here: bi is the biomass of the i-th species; Vmax and umax are the greatest growth and

absorption rates, respectively, and M i
k  is the corresponding semi-saturation constant.

After model calibration based on experimental data for a laboratory algocoenosis, three

computer experiments were conducted with, respectively, 45, 240 and 17 combinations of initial

nitrogen and phosphorus concentrations. The dependence of the species abundances on the N/P ratio

was not pre-loaded in the model. The results of the simulations confirm the hypothesis on the

dependence of the relative abundances on the N/P ratio and on the proximity of the optimal N/P ratio

to the ratio of the corresponding calibrated minimal quotas for each species.
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Table 3 demonstrates, as ratio of species in 4-species polyculture varies depending on the

resources ratio in a medium in the beginning of each computer experiment. At the lowest N/P

Scenedesmus quadricauda cells contribute about 80 % to total biomass of polyculture, but biomass

of, for example, Ankistrodesmus falcatus makes only 6-8%. At the increase of N/P species

predominance in polyculture changes into opposite. Listed in Table 3 intervals of  N/P values and

species shares in polyculture are integrated on a few computer experiments. For example, in

experiments with the N/P ratios in the beginning of experiment varying from 0.07 up to 5 share of S.

quadricauda varied from 75 up to 80 %, and share S. obliquus varied from 3 up to 6 % and so on.

Figure 9 shows similar change of subdominants in 3-specific polyculture (points marked on the

graphs are the results of concrete computer experiments).

Experimental control of the composition of an algocoenosis with the aid of the environment

resource ratio

The experiments of my colleagues and mine have been conducted with laboratory

polycultures and with natural phytoplankton communities in vitro and in situ.

The numerous sets of laboratory experiments (Levich et al., 1997; Bulgakov and Levich,

1999) differed from each other in the algocoenosis compositions and in the initial nutrient

concentrations in the medium. In the repeated experiments, one measured the abundances, cellular

volumes and environmental resource concentrations both in the polycultures and in the corresponding

monocultures. The initial intracellular deposits of the limiting resources were controlled, as well as

such non-limiting parameters as light, temperature, acidity, micro-elements; algological and

bacteriological purity, absence of metabolic interaction. The resource consumption by the whole

community and the cellular demands were calculated. The experiments in the storing cultivation

regime continued until a stationary stage of growth was reached. Fig. 10 presents the results of two

experiments with two-species polycultures (Levich and Bulgakov, 1993). It should be noted that

neither of these experiments contradicted the consequences of variational modelling.
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Two experiments have been conducted with pond phytoplankton in different seasons

(Levich et al., 1992; Bulgakov and Levich, 1999). The pond community contained more than a

hundred of species belonging to several large taxons: Chlorophyta (Chlorococcales,

Chlamydomonadales, Desmidiales), Bacill ariophyta, Cyanophyta. In one of the sets of experiments

(20-li ter aquaria), three different N/P ratios, in the interval of 5 to 16, were tested; in another set

(two-li ter flasks) — five ratios in the interval of 2 to 200. The experiments were repeated several

times. Fig. 11 ill ustrates the main trend: for Protococcales algae, high values of the N/P ratio are

optimal, while for blue-green ones and diatomes — low ones (of course, these are not high taxons

that respond to the N/P ratio, but the dominant species: among Chlorococcales these are S.

quadricauda, among Cyanophyta these are the species of the genus Microcystis, among

Bacill ariophyta these are Nitzschia sp.). I can note that the qN/qP ratio for S. quadricauda is

measured in tens of units (Levich and Artyukhova, 1991), while for the species of the genus

Microcystis the optimal ratio is 5 to 10 (Rhee and Gotham, 1980). In the experiment being

described, the effect of the N/P ratio on the size structure of the community was estimated as well . It

turned out (Fig. 12) that, as N/P grows, the biomass of the class of small cells increases, while that

of the large cells decreases (it is naturally not the cell size that is changing, but the proportion of the

species with the corresponding cell size in the whole community).

The investigations in situ were conducted (Levich and Bulgakov, 1992; Levich et al., 1996

a,b; Bulgakov and Levich, 1999) for three years in seven experimental fish-breeding ponds of 0.25

to 3.5 hectares, about 1.5 m deep. Mineral nitrogen and phosphorus were delivered to the test and

control ponds from the beginning of April i n different proportions: N/P = 4 in control ponds and

N/P = 25 to 30 in test ponds. Besides, the data about the phytoplankton and hydrochemical

characteristics of the same ponds in other seasons were taken into account (about 20 “year-ponds”

altogether). The biomasses of the phytoplankton populations were investigated, and the biochemical

parameters of the ponds were controlled. High N/P ratios led to an increasing fraction of

Protococcales algae and to a decreasing fraction of the blue-greens (whose composition was
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dominated by nitrogen-non-fixing species). Fig. 13 illustrates a typical dynamics of relative

biomasses for one of the ponds in one of the seasons.

Numerous laboratory experiments with flow-type cultivation of strains and natural

phytoplankton have revealed the existence of optimal species-dependent concentration ratios of

nitrogen, phosphorus and silicon (Holm and Armstrong, 1981; Tilman, 1982; Sommer, 1983;

Kilham, 1986; Suttle and Harrisson, 1988; Grover, 1989; De Pauw and Naessens-Foucquaert, 1991;

Suttle et al., 1991).

The first observations of the role of substance ratios for the phytoplankton development

have been made as early as in the thirties (Pearsall, 1930). Significant are Smith' s works (Smith,

1983; 1986): he analyzed the data from tens of lakes of the world and discovered that the fraction of

the blue-greens in the lake algocoenoses falls down abruptly as the atomic N/P ratio exceeds the

value of 25. Tilman (1982) called the discovered law “a dramatic influence of the N/P ratio on the

taxonomical composition of lakes”. The widely known experiments in the small lakes of Sweden,

conducted for many years (Schindler, 1977; Findley and Kasian 1987), have also shown that the N/P

variation led to a change in the reservoir blooming type. The dependence of a high abundance of the

blue-greens on low values of the N/P ratio (or the dependence of a high abundance of the greens on

high N/P values) has been noticed in the lakes of the USA (McQueen and Lean, 1987; Stockner and

Shortreed, 1988), South-Eastern Asia (Cho et al., 1990), South Africa (Haarhoff et al., 1992). The

inverse proportionality between the abundance of the blue-greens and the N/P value has been

established with the aid of statistical correlation analysis for many lake ecosystems (Varis, 1991).

One of the possible mechanisms of such N/P-dependences of the abundances of blue-green

and green algae can be represented by the dependence of the optimal N/P ratio on the ratio of the

corresponding cellular demands, revealed by the theorem of maximum species abundances (in the

cases when this ratio is high for the green algae, dominant in the coenoses, and is low for the blue-

greens).
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The model and empirical data on the role of the N/P ratio for the species and size structure

of phytoplankton communities have made it possible to formulate the conception of directed

reservoir blooming control with the aid of biogenic manipulation (Levich, 1995a; 1996). In the de-

eutrophication problems, regulation with the aid of the N/P ratio leads to an opportunity of

paradoxical control. Namely, the conventional way of de-eutrophication is to lower the phosphoric

load (arrow AB in Fig. 1). If, however, it is indeed the low N/P ratio that is essential for the

dominance of cyanobacteria, rather than the absolute doses of the nutrients, then one can achieve a

transition from reservoir blooming with the blue-greens to blooming with, e.g., Protococcales, by

adding nitrogen compounds to the reservoirs (arrow AC in Fig. 1), which is both technically and

economically much easier than to extract phosphorus or to restrict its presence in the flows. The

additional primary production emerging due to enhanced doses of nutrients (now as the biomass of

the Protococcales) may be easily utilized and turned into secondary production by consumers (for

example, by fishes eating phytoplankton, specially introduced in the reservoir), since green algae,

unlike many taxons of the blue-greens, do not form a trophic dead end and are, as a rule, not toxic.

Moreover, a transition from the domain of one-factor limitation (point A in Fig. 1) to that of two-

factor limitation (point C in Fig. 1) guarantees the absence of accumulation of the nutrients in the

medium due to their full balanced consumption.

The regulation of the phytoplankton community composition may turn out to be useful as

well in the case of optimization (by species or biochemical composition, or by size structure) of

forage phytoplankton communities for invertebrate breeding, herbivorous fish breeding and other

forms of aquaculture (Levich et al., 1996a,b).

An increased proportion of the blue-greens due to a lowered environmental N/P ratio may

turn out to be useful for sewage disinfection if sewage waters are to be used for sprinkling or in

order to improve the biological properties of sprinkling waters.
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4.4. Interpretation and discussion of the extremal principles. Gibbs's theorem

Extremized invariant and the entropy

The functional ( )H  
�

n , extremized in the above variational problems and called the

generalized entropy in Sec. 3, was obtained as a logarithm of the specific invariant which has

emerged while ordering the mathematical structures describing the system. The similarity between

the quantity H and Boltzmann' s entropy is not by accident, since both structure invariants and the

statistical entropy are calculated as the numbers of certain transformations (in the case of statistics

they are treated as “microstates”). However, our functional, obtained from functor comparison of

structures, is in no way connected with a statistical context: its application requires neither large

abundances ni, nor a large number of species w.

A concrete form of the generalized entropy depends on the type of transformations

admitted by the structure of the system under study. Some variants of functor invariants of

structures are collected for ill ustration in Table 4 (Levich, 1982; Levich and Solov’yov, 1999).

A substitution of a solution to the problem (1) — the species structure formula (3) — to

the entropy formula leads to a representation of the entropy as a function of the resources limiting

the system development:

( ) ( )H
� �

L L Lk k

k

m

=
=

∑λ
1

.

In the thermodynamical case, when I deal with a maximum entropy of a gas, with the only restriction

by the heat flow L1 ≡ ∆Q, I obtain H = ∆Q/T, where 1/T ≡ λ1 is the corresponding Lagrange

multiplier. This establishes a relation between the "generalized entropy" H and the entropy in

phenomenological thermodynamics.

Thus the extremal principle that I have applied can be treated as one of the modifications,

or, if it turns out to be acceptable, a ground for the maximum entropy principle (Boltzmann, 1964;

Gibbs, 1902; Jaynes, 1957; Feynman, 1972; Levine and Tribus, 1978; Haken, 1988; Gzyl, 1995),
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which is most widely applied in the most different fields, from pure mathematics and theoretical

physics to ecology and linguistics.

Other thermodynamical extremal principles are equivalent to the entropy principle:

A maximum of the entropy H with an energy E restriction leads to a minimum of the

Lagrange function F = E − TH, which is called in thermodynamics free energy (a relation between

the absolute temperature T and a Lagrange multiplier was indicated two paragraphs before).

The quantity e = T(Heq  −  H), where Heq is the entropy of the system in the

thermodynamical equilibrium state, is called in thermodynamics exergy (i.e. the energy that can be

converted into useful work with the participation of a given environment). S. JØrgensen (1986; 1988;

JØrgensen et al., 1995) has put forward and successfully applied the maximum exergy principle in

the context of ecological modelling: changes in the influence upon a system will cause the system

structure changes accompanied by non-negative exergy changes. The exergy value coincides up to a

constant factor with the "generalized entropy", the logarithm of the specific invariant of the system

which is extremized in our approach. Thus the extremal principle proposed in the present work is a

modification of S. JØrgensen' s maximum exergy principle, supplemented by a non-thermodynamical

method of entropy calculation.

Complexity, information, self-organization, expansion, measure of structuredness,

“ stabilit y” , diversity

The entropy origin of the functional H creates for it some more possible interpretations:

A system complexity measure.

The amount of information contained in the system structure (Levich, 1978; JØrgensen,

1995; Bastianoni and Marchettini, 1997).

The degree of the system' s self-organization (Klimontovich, 1995; Levich, 1995b).

In its original formulation (Section 3), the extremal principle under consideration is

postulated as a realization of system states with an extremal structure. The construction of a
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comparison between structured sets (Bourbaki, 1956; Levich, 1982; Levich and Solov’yov, 1999) is

similar to that of cardinali ty comparison between structureless sets. Therefore the extremal principle

proposed here generalizes the maximum expansion principle (within the resources available), which

is conventionally applied in biology to separate populations, to communities of many species.

The functional ( )H
�

n  may be characterized as a measure of the community

structuredness, i.e., the degree of remoteness of the set' s partition from its structureless analogue. In

this way to the formulation of the extremal principle as that of the realization of an extremal

structure returns.

For systems with the same basic set cardinali ty n, the value of the specific invariant

( )J
�

n
n

n

n

i
n

i

w
i

=

=
∏
1

 will be the greatest if the denominator ni
n

i

w
i

=
∏
1

 is the smallest. This quantity is

the number of transformations admitted by the system structure (in this case, the structure of a

partition into non-intersecting groups of individuals). Thus the extremal principle reduces to the

requirement that a state with a minimal number of admissible states be realized, or, in the above

sense, a state with the most “stable” structure.

The quantity ( )1

1
n

n
n

n

n

n
i i

i

w

H log
�

= −
=
∑  is used by ecologists as the diversity index of the

species structure of a community (McArthur, 1955). I would like to note that a consideration of

communities with other admissible transformations than those adopted in our model (Section 3) leads

to expressions for the structure invariants which coincide with other known diversity indices (see

more details in section 5.1). The above identifications make it possible to interpret our extremal

principle as the requirement of a maximum species diversity in a community (see e.g. Lurie et al.,

1983).

The Gibbs theorem
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It can be shown (Levich and Alexeyev, 1997) that the problem (1)
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H ( ) ;

L , ,

�

�

n

n q n L k mk
i
k

i
i

w
k

−

= ≤ =









=
∑

�����

1

1

for each j m= 1,  is equivalent to the problems
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

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It thus turns out that, instead of the formulation of the extremal principle as “the system entropy is

maximum under the condition that the resource consumption is lower than a certain deposit”, another

formulation is valid: “the resource consumption by a system is minimum under the condition that the

system entropy (or its complexity, diversity, etc.) is higher than a certain threshold”, i.e., the

maximal entropy principle is equivalent to the principle of minimal consumption of limiting

resources. The theorem indicated is a generalization of the Gibbs theorem (Gibbs, 1902) that the

requirement of maximum gas entropy (for given energy) is equivalent to the energy minimization

procedure (for given entropy).

5. Ecological meaning of the model constructs

5.1. Origin of rank distributions

If one enumerates the groups of organisms by decreasing abundances, then the number i of

a group is called its rank, and the rank dependence of the abundance n(i) is called a rank distribution.

The rank distributions of abundances (or biomasses) are an effective tool for quantitative studies of

the structure of ecological communities and for normalizing the structure-violating influences.

One may consider as groups such sets as biological taxons, size classes, or any sets of

individuals united by physiological or other indications. The reviews concerning applications of rank
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distributions in ecology (Levich, 1980; Frontier, 1985; Puzachenko, 1996) contain a great number of

references to studies of communities of plankton, benthos, periphyton, birds, mammals, insects,

higher plants and many other organisms.

Various approximations are used in ecology for phenomenological descriptions of rank

distributions (Levich, 1980): the exponential model, n(i) ∼€ �
i; the hyperbolic model,

n(i) ∼ +1 / ( )i B β ; the zeta distribution that unifies them n(i) ∼ � i i B/ ( )+ β ; the “broken

rod” model, n(i) ∼ ln (1/i) (where n(i)  denotes the number of individuals of the rank i; z, b and B

are model parameters).

The species structure formula (3) (see Section 4.2) explains the origin of rank

distributions.

Let m = 1, i.e. only one resource is consumed. Let the species' demands for this resource be

distributed linearly: qi ≡ q1i. Then the species structure formula yields the exponential rank

distribution, ni /n = zi, where z = { }exp− λq1 (see also examples in Section 4.2). Then, let the

species' demands be distributed by the law qi =q1 ln(B + i), then ni /n ∼ 1/(B + i)β, where β = λ q1.

For such a slowly varying demands distribution as qi ∼ lnlni, I obtain a distribution of abundances

close to that specified by the "broken rod" model, ni ∼ −lni. In the case of two resources and the

demands distributions q ii
1 ∼ and q ii

2 ∼ ln , I obtain a two-parameter zeta distribution of

abundances. The abruptly decreasing form of rank distributions becomes understandable: according

to the species structure formula, the abundances depend exponentially on monotone demands

distributions. Thus the distribution of abundances is entirely created by the distribution of demands.

See also other examples in Section 4.2. Fig. 4 illustrates the empirical rank distributions for

phytoplankton.



24

5.2. Biological diversity

The origin of diversity indices

The rank distribution parameters (the Lagrange multiplies of the model) reflect the

abundance decrease rate (abruptness, evenness, uniformity, homogeneity, etc) from group to group,

or, which is the same, the degree of dominance of highly abundant groups. These parameters are

called the indices of species' (as far as a species distribution is concerned) diversity and are usually

calculated using approximate formulae: ( )w n− 1 log  (Margalef, 1951) for exponential rank

distributions, � �  for β€ =€2 (Menhinik, 1964) for hyperbolic distributions, ( )� �− �
 for

β€ =€1 (Odum et al., 1960). These indices are incorporated in the class of parametric ones (Levich,

1980).

Another class is formed by imperative diversity indices, like the entropy index

−
=
∑ n

n

n

n
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i

w
iln

1

 (McArthur, 1955), the Simpson index 1
2

−




=

∑ n
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w

1

 (Simpson, 1949), or the

Pielou index 
1

n

n

ni
i

w
ln

!

!
=
∏
1

 (Pielou, 1975). These indices are unambiguously related to the

invariants of mathematical structures which create the functionals of the variational model. The

entropy functional has emerged (see Section 3) in modelling of a community by the structure of a

partitioned set and mortality and cellular fission as admissible transformations (the correspondences

in Table 4 which are injective and surjective, but are not functional and are not everywhere defined).

If one admits, in addition to the above ones, such transformations as absorption of some organisms

by others and introduction of individuals from outside (arbitrary correspondences in Table 4), then

the specific invariant acquires the form 2 2
2 2

1

n n

i

w
i

=
∏ , while the extremized functional — namely,

the logarithm of the invariant — is ( )n n ni
i

w
2 2

1

1 −










=
∑ , i.e., turns out to be proportional to
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Simpson' s diversity index. If only invariable existence of individuals is admitted (injective,

functional, everywhere defined and surjective correspondences), then the specific invariant of the

partitioned sets structure is n ni
i

w
! !

=
∏

1
, while the extremized functional turns out to be proportional

to Pielou' s diversity index.

Thus the variational model allows one to consciously choose a diversity index that is

adequate to the community structure and state. Namely, the imperative diversity indices are

determined by the mathematical structure adopted for the description of the community, and by the

transformations admitted by its functioning. As for the parametric indices, they are created by

extremizing some imperative index and, in addition, depend on the demands (quotas) matrix and on

the environmental resource deposits.

The biological diversity theorem

According to the variational model, one can assert that the biological diversity is a

consequence of the limited nature of biogenic resources on the Earth. More precisely, the following

theorem is valid: under unlimited resources, only one-species communities can exist. Indeed, a

solution of the variational problem (1) without resource limitation using Lagrange' s method of

indefinite multipliers implies the requirement that the partial derivatives of the Lagrange function

( )Φ = + −










=
∑H �n n ni
i

w

λ
1

with respect to ni and n be zero, which in turn allows one to express

ni and n in terms of the multipliers λ: ni = n =€e λ −1 and their substitution to the constraint

n ni
i

w

=
∑ =
1

 gives w€=€1.
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5.3. The ecological meaning of the Lagrange multipliers

The interpretation of the Lagrange multipliers (at least for m =€1) as parametric diversity

indices has been demonstrated in Section 5.2.

Another interpretation is connected with the dimensionality of the Lagrange multipliers.

Since the exponent of the exponential function in the species structure formula (3) is dimensionless,

the dimensionality of the multiplier λk is inverse to that of the demands qi
k . That is, the quantity

1/λk may be proportional to the community-averaged demand for the resource k, having the same

dimensionality. (I would note that, in the case of perfect gas thermodynamics, for a given energy one

has 1/λ€= T, where the absolute temperature T is proportional to the mean molecular kinetic

energy.)

One more interpretation is connected with a theorem of variational modelling claiming that

∂
∂

λ
�

Lk
k=

(Lancaster, 1968), i.e. the Lagrange multiplier λk is the changing rate of the entropy H due to

changes of the resource k, therefore it may be interpreted (Intrilligator, 1971) as the "strength of

influence" of the factor k upon the "goal function" H.

6. Conclusion

Works in the field of variational modelling can be continued along several lines.

The category-functor basis of the model requires further development. In particular, a

formal rather than heuristic foundation of the formula for a specific invariant is necessary. It is

possible to perform calculations of functionals for communities with more complex structure types,

e.g., with age or trophic structures.

It is desirable to have a "local" instead of global formulation of the extremal principle,

making it possible to describe trajectories of a system rather than only stationary states. A search for
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dynamical equations may turn out to be promising on the way to choosing dynamical systems whose

calculated generalized entropy would be a Lyapunov function.

It is possible to solve variational problems with functionals and limitations other than those

used in the present paper; it is possible to formulate and prove the corresponding analogues of the

already existing theorems, to formalize the approaches to descriptions of communities consuming

mutually interchangeable resources, to obtain models of exploited populations, etc.

It is necessary to continue the experimental verification of the model' s consequences; it is

necessary, in particular, to perform the above described experiments for testing the Limiting Link

Rule. It is of interest to seek physiological mechanisms responsible for the realization of the

maximum species abundances theorem in the case of equal ratios of external and internal

concentrations of the limiting resources for a given organism.

Another point deserving attention is application of the ideas of ecological variational

modelling to the description of technocoenoses or economical system which function under the

condition of competition for resources.

Application of the consequences of variational modelling to the ecological normalization

problems may be of great importance. The point is that the model constructs (functionals, Lagrange

multipliers, solutions of the variational problem) specify certain quantitative laws, and a deflection

from these laws may be interpreted as an extent of violation of a system' s normal functioning. Many

of these constructs, in particular, rank distributions, parametric and imperative diversity indices, are

systematically used as integral estimation characteristics in the ecology of communities (Levich,

1980; Levich, 1996a). A variational model allows one to consciously select the characteristics

adequate to a situation under study and to obtain a biological-based estimate of the ecological state

of natural objects on the norm-pathology scale. On the basis of such an estimate allows onecan, in

turn, calculate regional standards of ecologically admissible levels of environmental factors which

violate the ecological prosperity (Levich, 1994; Levich and Terekhin, 1997).
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Fig. 1. Stratification of the resource space for m = 2. In I the resource 2 is limiting, in II the resources 1 and 3,

and in III the resource 1. See notations and comments in the text.
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Fig. 2. Stratification of the resource space for m = 3. In I three resources are limiting, in II — L1 and L2, in III

— L1 and L3, in IV — L2 and L3, in V — L1, in VI — L2, in VII — L3.
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2

Fig. 3. Stratification of the resource space for a “community” of a single species.
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Fig. 4. Graphs of hyperbolic (A) and exponential (B) rank distributions. Crosses mark the empirical values of

phytoplankton abundances in the Rybinsk reservoir.
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Fig. 5. Abundances for experimental demands in a two-factor problem (L1 ranges from 0.001 to 99; L2 ranges

from 0.001 to 50).

A. The relative abundances pi = xi/n (ν = 3.06; η = 4.36).

B. The abundance n1 (it ranges from 7.833.10-6 to 4.192).

C. The abundance n2 (it ranges from 4.2.10-4 to 83.16).

D. The total abundance n (it ranges from 1.389.10-3  to 275).
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Fig. 6. Abundances in the two-factor “quadratic” model ( L1 and L2 range from 0.001 to 100).

A. The relative abundances 
� �

71,=i nn=p ii .

B. The abundance n3 (it ranges from 7.932.10-8 to 3.791).

C. The total abundance n (it ranges from 5. 267.10-4 to 52.67).
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Fig. 7. The relative abundances pi = xi/n (i = 2 for A and i = 4 for B) as functions of L1/L2 and L1/L3 in a three-

factor model (L1/L2 ranges from 0 to 4.955 in A and from 0 to 6.494 in B, L1/L3 — from  0 to 0.952, p2 — from 0 to

0.3153, � 4 — from 0 to 0.8752).
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Fig. 8. The dependences of relative abundances in a four-species culture on the initial environmental nitrogen to

phosphorus ratio. 1 — Ch. vulgaris (the demands ratio qN/qP = 8); 2 — S. obliquus  (qN/qP = 13); 3 — S. quadricauda

(qN/qP = 19); 4 — Ankistrodesmus sp. (qN/qP=25).
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Fig. 9. The dependences of relative biomasses in a three-species culture on the initial environmental nitrogen to

phosphorus ratio.  1 — S. quadricauda, 2 — A. falcatus, 3 — A. variabilis. The initial environmental phosphorus

concentration has been equal to 0.5 mg/l.
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Fig. 10. The dependences of relative abundances of species on the nitrogen to phosphorus ratio in laboratory

experiments with two-species cultures. In Fig. A: 1 — S. quadricauda, 2 — Ch. vulgaris; in Fig. B: 1 — S. quadricauda,

2 — A. falcatus.
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g/m3

g/m3

Fig. 11. The dependences of final absolute biomasses on the initial nitrogen to phosphorus ratio in the

experiments in vitro. A — Chlorococcales; B — Bacillariophyta (1), Cyan ophyta (2), Volvocales (3).
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Fig. 12. The dependences of relative abundances of size classes  (under 0.1 ng (1), 0.1- 0.3 ng (2), 0.4-1.0 ng

(3), 1.1-3.2 ng (4) and over 3.2 ng (5)) on the nitrogen to phosphorus ratio in the experiments in vitro.
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Fig. 13. The dynamics of relative biomasses of the Protococcales (A) and the blue-greens (B) in pond

phytoplankton in situ.
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Table 1. Domains of limitation when the algocoenosis growth is potentially limited by nitrogen (N) and

phosphorus (P)

A — cellular quotas 
�
��  of algocoenosis components and boundaries ( )ν qi

k  and ( )η qi
k  of strata in

resources space generated by quotas.

B — belonging of nutrient media in the five experiments to different strata, in which community growth is

restricted by different submultiplicities of available set of resources.

A

Algal species and parame- Cellular quotas (10-9 mg/cell)

ters of the strata boundaries N P N/P

Scenedesmus quadricauda 1.2 0.02 60.0

Scenedesmus obliquus 0.46 0.025 18.4

Ankistrodesmus falcatus 0.4 0.04 10.0

Chlorella vulgaris 0.6 0.02 30.0

( )ν qi
k 17.5

( )η qi
k 31.7

B

Environmental content of resources

(mg/l) Limiting resources

N P N/P

6 0.05 120 P

6 0.10 60 P

6 0.20 30 N, P

6 0.40 15 N

6 1.00 6 N



Table 2.  General set of calibrated quotas (q) and the relative abundances of species in the communities predicted with its aid (re is the rank of a

species in a community in the experiment; rm is the rank of a species in a community according to the model; rq is the rank of a quota; S is Spearman' s rank

correlation factor)

Experimental run

Species rq 1 2 3 4 5

re rm re rm re rm re rm re rm

A. braunii 4 3 3

A. acicularis 9 4 6 7 7 7 7 7 7 4 4

S. obliquus 2 1 1

S. nivalis 8 5 5 5 6 6 6 6 6

Ch. cinnoborina 12 9 9

Ch. humicola 13 10 10

Ch. vulgaris 5 7 4 3 3 4 3 3 3 3 3

S. mirabilis 11 8 8 8 8 8 8 8 8

S. bijugatus 10 6 7

S. quadricauda 3 2 2 2 2 2 2 2 2 1 1

A. falcatus 6 6 4 3 4 4 4 2 2

Anacystis nidulans 1 1 1 1 1 1 1

Pleurochloris magna 7 4 5 5 5 5 5

S 0.915 0.929 0.976 1.000 1.000
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Table 3. Relative abundances of species in the community vs. the environmental N/P ratio in

simulation modelling

N/P Percentage of species in the community

S.q. S.o. A.f. C.v.

0.07-5 75-80 3-6 6-8 5-10

5-10 70-85 1-6 6-15 5-15

10-20 60-75 0,6-4 10-20 6-17

20-30 40-60 0,5-3 20-40 10-17

30-60 35-50 1-3 37-55 7-15

60-80 30-40 1,5-2 50-60 7-9

80-220 10-25 1-2 60-85 4-8

Notations: S.q. — S. quadricauda, S.o. — S. obliquus,  A.f. — A. falcatus, C.v. —

Ch. vulgaris,  N — nitrogen, P — phosphorus.
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Table 4. Number of correspondences from the set X (with the number of elements x) to the set

A (with the number of elements a). Ck means a set C with the number of elements k. The

subscripts mean that one counts the correspondences possessing the properties whose

notations enter into these subscripts:

p —correspondences defined everywhere;

f — functional correspondences;

i — injective correspondences;

s — surjective correspondences
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