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QUANTUM-MECHANICAL UNCERTAINTY RELATIONS AS A
CONSEQUENCE OF THE POSTULATES OF N.A.KOZYREV'S CAUSAL
MECHANICS; FORCES IN CAUSAL MECHANICS

L. S Shikhobalov

This paper consists of four independent sedions. In the first one Heisenberg's un-
cetainty relations are derived on the basis of the fundamental postulates of N.A.Kozyrev's
causal medhanics. The second sedion contains a definition of the wurse of time ¢ differ-
ing from that introduced by N.A.Kozyrev. In the third sedion possble generalizaions of
Kozyrev's expressons for the alditional forces ading in causal links in causal medanics
are proposed. The fourth sedion analyses the inacairacy of force representation in class-
cd medhanics related to the negled of time intervals between causes and effeds.

1. Causal mechanics and the quantum-mechanical uncertainty relations

N.A.Kozyrev's causa medianics (Kozyrev 1991) begins with the postulates
claming that in an elementary cause-effed link the caise and effed points are separated
by an arbitrarily small but nonzero space ad time differences dx and &t whose ratio is a
fundamental constant cdled the course of time cy:

co = Ox/6t = const . (1.1

The onstant ¢, is assumed to be pseudoscdar. Its pseudoscdarity is related to the same
property of the quantity &t. However, the statement that ot is pseudoscdar, is, in our view,
not sufficiently justified. To “avade” the question of whether &t is a pseudoscdar or atrue
scdar, let us passin law (1.1) to the magnitudes of the quantities:

lc2| = [ox|/|3t| = const . (1.2

The physica meaning of the quantities dx and &t is not described in detail in causal
medanics. We asgn them the meaning allowing one to establish a relation between
causal medhanics and quantum physics.

Let space ad time form a unified four-dimensional manifold possessng the proper
Euclidean geometry including both space ad time variables (in what follows it does not
meatter which global geometry, proper Euclidean or pseudoeuclidean, is used, since the
gpatial and temporal quantities are mnsidered separately in the present sedion).



We define a“collision” & an interaction of material points (particles) that they ap-
proach each other to the minimum possible spatial and temporal distances. It should be
noted that the minimum distances between particles may be different in different
“collison” ads, but they are undoubtedly nonzero since in a Euclidean continuum different
points are always separated by a nonzero interval.

Assume that the space and time coordinates of “colliding” material points are i n-
dependent random variables and that the quantities [d&x[ and [&t] are quantum-
mechanical uncertainties (i.e., root-mean-square values) in space and
time distances between the “collided” particles:

5 = 12)2; [ot]=+/(t1 - 12)2, (1.3)

where T, t3, I, t, are the spatial radius-vectors and time coordinates of the “collided”
particles; the bars denote the procedure of averaging over al the possible vdues.

Assume that the random quantities 1rl and 1r2, aswell as t1 and t,, are character-
ized by the same distribution densities and average values. The space-time point coinciding
with the average position of both particles, will be called the collision point. It is this point
that in a macroscopic description is considered to be the place where the two particles
“collide”. The spatial radius-vector T and the time coordinate t of the collision point are

r= r:r2, t=t,=1,. (1.9

The root-mean-square deviations from the collision point are equal for the two
particles due to identity of their density distributions, and they, in both space and time di-
rections, are, respectively,

Ar=+(h-N2 = (- N2;
At=(t;-1)2 =/(t - 1)2. (15)

By (1.3) - (1.5) and due to independence of the random quantities 1rl and 1r2 one can
write:

ox = (f~ )2 = [(h-D)-(- 1r~)]2
= (L -N2-2( - Nz~ N+ ([ ~1)2
= 2(Ar)2 =2(r — 1) {rp — 1) = 2(Ar)2.

Hence the particle spatial position uncertainty is connected with the quantity [dx[1by the
relation

Ar = T|6X| (16)

Similarly for the particle's temporal coordinate uncertainty one can obtain the following
relation involving (Bt



1
At 5 |- (1.7)
While describing a “collison” & the macroscopic level, a single point introduced
above by (1.4) is assumed to be the force application point for both particles. Meanwhile,
the real positions of particles in space and time and consequently their force application
points may not coincide with the collision point. The inaccuracy of the force application
points determination leads to the inaccuracies of particle energies and momenta. Besides,
the energy determination error is equal to the work to be done by the force displacing a
particle from the collision point to that of its real location. And the momentum determina-
tion error is equal to an additional momentum which the particle should have gained under
the action of the above force for a time interval between the real interaction instant and
that corresponding to the collision point. Thus, the i maccuracres of energy and momentum

determination in a separate “collison” ad are equal to FlEer - r) and Fl(tl—t)
spectively, for one particle, and F2 EQrz - r) and F2(t2 —t) for the other, where Fl and

IL:2 are forces acting on the first and second particles. The root-mean-square values of
these quantities may be identified with quantum-mechanical uncertainties in particle ener-
gies and momenta. Let us calculate them.

Assume that the particles interact by the forces described by Newton's classical
mechanics, i.e. the forces which are equal in magnitude, oppositely directed and have a
common line of action, namely, the straight line passing through both particles (the forces
introduced in causal mechanics are neglected due to their smallness). Such forces may be
represented in the form

rl - r2 I I

=-F, 18
P =R (L8)

where F is the magnitude of the forces F, and F, and (T, - Fz)/|1r1 —1r2| is the direction
unit vector; the plus and minus signs correspond to the cases of particle repulsion and a-
traction, respectively.

While calculating the energy uncertainties, we restrict ourselves to the case when
the particlesin “collision” ae situated on the same line with the collision point (whose p o-

sition may be different for different “collisons’). Since in this case the forces R and F,
are oriented along the same line, the direction unit vector in (1.8) coincides up to a sign
with the vectors (f, 1)/ |f, = | and (f, = T) /|t ~T|, hence (1.8) may be rewritten in the

form
1 1 1

r =T fo—T r r
R=tFl 1 =tF2 1, R=-R (1.9
=l =T

(here and in Eg. (1.11) presented below the sign of Ilzl may differ from that in formula
(1.8)). For such arepresentation of the forces E and IL:Z one easily calculates the energy
value uncertainty AE, the same for both particles:
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[T np . |0e-ha-Hhd
AE = [ @ - ) —\/EtF Tnf
=Py -H2 =Far, (1.10)

where F* is the value of F at a certain mean point; i = 1, 2; here the mean-value theorem
and the first formula from (1.5) are used.

Now let us calculate the momentum uncertainty. Aiming to compare the result to
be obtained with the corresponding result of quantum mechanics, we perform calculations
in the one-dimensional case, as was done in the book by Landau and Lifshitz (1989). Let
the “colliding” particles and the colJision pgint be situated on a single line paralel to the z
coordinate axis. Then the forces F; and F, described by (1.8) can be represented in the
form

1 1

R=tFk F=-R, (1.11)

where k is the direction unit vector of the z axis. In this case the uncertainty Ap, of the
momentum z component, having the same value for both “colliding” particles, is

Ap, = ll;q/[ﬁ(ti —t)]2 :J[iFii(ti _p)?

= P/t —1)2 = FAt, (112

where F** is the value of F at a certain mean point; i = 1, 2; the mean-value theorem and
the second formula from (1.5) are used. In this case the z coordinate uncertainty Az, hav-
ing the same value for both colliding particles, is

£2=1(z1-2)2 =/(z2 - 2)2 = b, (1.13)
where z1, z», z are the z coordinates of the particles in “collison” and that of the collision
point, respectively.

Let us specify the values of the forces F and F, . We shall assume that the parti-

cles bear electric charges e or —e (—e being the electron charge), interact only by electric
forces and, while “colliding”, are mutually at rest. In this case their interaction is per-
formed by the Coulomb forces described by the expression (1.8), with the magnitude

F= —e2 ,
r T2
ATE |1 — T
where £ is the vacuum permittivity. In what follows we use only that magnitude value of

forces which corresponds to the particle spacing |1r~1 —lf2| equal to[dx[1 It is this force
magnitude value that is further designated as F:



F= Lz . (1.14)
4ATE |OX|

Now let us form the product of the force magnitude F and the uncertainties in the
space and time coordinates of the particles. Taking into account the dependences (1.6),
(1.7), (1.14) and the definition of the course of time ¢, , we obtain

| e _ he
8regldX|  8rEglcy|  2]cy|’

FAr At = % F|5x||3t| = (1.15)

where o =e2/ (4Teghc) =1/ 137 is the fine structure constant; h=h/ (2m) is the Planck
constant and c isthe velocity of light in vacuum.

It is evident that the parameters F* and F** involved in Egs. (1.10) and (1.12), can
be set equal to F. Hence from (1.10), (1.12), (1.13), (1.15) it follows that
h c h c

~—— Ap,Az=a—— (1.16)
2fco|”

AEAt = .
2|cy)

One of the uncertainty relations of quantum mechanics, written for the minimum
possible values of the uncertainties, is of the form

Ap,Az= 151 (1.17)

Comparing the second relation of (1.16) with (1.17), we find:

2| - a=-1 lco| = ac = 2187.7km's. (1.18)
C 137

The fact that the constant c,, the fundamental quantitative characteristic of causal
mechanics, is represented in the form of a product of fundamental constants, confirms the
validity of one of the starting points of Kozyrev's theory, namely, that this constant is fun-
damental.

The above numerical value of the constant ¢, is in agreement with the value ob-
tained by N.A.Kozyrev experimentally by measuring additional forces in mechanical sys-
tems (Kozyrev 1991, pp. 367, 382). The fact that the experimental value of ¢ proved to be
precisely the one, alowed him to adopt the relationship Cto[ = ac as an empirical fact.

The result expressed by (1.18) allows some points of quantum mechanics to be re-
viewed. The origin of the fine structure (dimensionless, fundamental) constant has been
troubling physicists for long. Thus, R.Feynman (1985) named the question of how this
number appears, one of the greatest damned mysteries of physics: a magic number which
IS given to us and which man does not understand at all. Relations (1.18) lift the vell of
mystery around this number. According to N.A.Kozyrev, “...the presence of the dimen-



sionless constant o ceases to be mysterious and becomes natural as a ratio of two funda-
mental velocities’ (Kozyrev 1991, p. 367).

Equations (1.18) enable one to refine and reinterpret the uncertainty relation for
energy and time. Thisrelation, as applied to the minimum possible values of the uncertain-
ties, is conventionally written in the form

AEAt ~ h. (1.19)

This relation, unlike (1.17), does not set an exact lower bound of the product of uncer-
tainties but only its order of magnitude. The very quantities entering into (1.19) are treated
differently from those appearing in (1.17). This is related to the fact that in quantum me-
chanics time is considered to be a determinate but not random variable. Hence the quanti-
ties AE and At are not understood conventionally, i.e., they are not regarded as root-mean-
square deviations but, instead, as an energy measurement error and a duration of its mess-
uring respectively (De Broglie 1982, Demutsky and Polovin 1992). It is easy to see that
the difference in interpretations of quantum mechanical dependences (1.17) and (1.19)
contradicts the relativistic symmetry of space and time. Equations (1.18) allow this con-
tradiction to be eliminated. They and the first equality from (1.16) lead to the uncertainty
relation for energy and time in the “standard” form relating to one another the minimum
possible values of the root-mean-square deviations of the corresponding variables:

AE At = 151 (1.20)

Equations (1.18) and (1.15) yield one more uncertainty relation:
FAr At = % F[ox|[ot| = 151 (1.21)

where a value with the dimension of action stands at the left-hand side.
Restrictions on the possible values of the quantities Ar and At can be obtained
provided that the energy uncertainty does not exceed the rest energy of an electron:

AE < mgc?, (1.22)

where mg is the electron mass. This condition and Egs.(1.6), (1.7), (1.14), (1.20), (1.21)
lead to the following inequalities:

aoh

Ar = %|6x| 25 — =14l [10-15m;
MeC
. he (1.23)
At =—|5t| =~ 6.441022s,
J2 2meC2

where the quantity on the right side of the first inequality is equal to half the so-called
classical radius of an electron.



The present section departs from the division of interacting material points into a cause and an
effect, being of importance in causal mechanics (as the effect always comes after the cause). The interact-
ing particles are equivalent in the above considerations and cannot be consistently divided into a cause

and an effect, e.g., their time coordinates in “@llision” equally probably satisfy both inequalitiest 1 >t
and to > t.

Making use of the uncertainty relation (1.17), we have proved the validity of Ko-
zyrev's law (1.2) and confirmed that the course of time c, has just the value which
N.A.Kozyrev ascribed to it on the basis of the results of macroscopic experiments. If the
law (1.2), involving the constant ¢, given by (1.18), were assumed to be a fundamental
postulate, the uncertainty relations (1.17), (1.20), (1.21) might be easily obtained. This
means, in particular, that the quantum-mechanical uncertainty relations may be regarded as
a consequence of the postulates of causal mechanics.

From the content of the present section it can be concluded that Kozyrev's causa
mechanics is in agreement with quantum physics. Moreover, causal mechanics results in a
new interpretation of Heisenberg's uncertainty relations. The latter may be treated as a
consequence of the uncertainty in the space-time intervals in particle “collisions’. The u n-
certainties obey the law (1.2) with the constant ¢, equal in magnitude to ac. This inter-
pretation may obviously make us revise our attitude to the other conceptual statements of
guantum mechanics as well.

2. On the time characteristic ¢z in N.A.Kozyrev' s theory

An experiment for measuring the course of time c; was carried out by N.A.Kozy-
rev by weighing a rotating gyroscope with a vertically oriented axis (Kozyrev 1991).
When vertical vibrations were introduced into the balance-gyroscope system, a change of
the gyroscope weight was observed by the value of A® proportional to its weight @ and
the linear rotation speed v of the rotor; the value of the parameter ¢, was calculated by the
formula

AD| :C—T;vqa (2.1)

and turned out to be about 2200knVs (Kozyrev 1991, pp.366-367, 382). N.A.Kozyrev
treated this fact as appearance of additional forces neglected in classical mechanics. He
postulated ¢, to be a pseudoscalar, since the effect changed sign when the physical system
under investigation was replaced by a mirror-symmetric one.

The course of time ¢, is defined in causal mechanics as the rate of causal action re-
alized in an elementary cause-and-effect link comprising two material points, those of the
cause and the effect:

Cy = Ox/ot, (2.2

where dx and &t are arbitrarily small but nonzero space and time differences between the
cause and effect points.



This definition assigns a clear physical meaning to the most important characteris-
tic of time in causal mechanics. The validity of just this definition is supported by the re-
sults of the previous section where the quantity ¢, was proved to be a fundamental con-
stant. Nevertheless, the above definition has a number of shortcomings.

1. The course of time c; is determined by EqQ. (2.2) in terms of the quantities dx
and ot eluding a direct experimental measurement.

2. Equation (2.2) isinconsistent with a pseudoscalar nature of ¢, (N.A.Kozyrev's
assumption that the time interval &t is a pseudoscalar, is not sufficiently justified in his pa-
pers (Kozyrev 1991) and therefore cannot be taken for granted).

3. The definition under consideration leads to an inconsistency between the in-
stantaneous character of action transmission via time through cosmic distances (Kozyrev
and Nasonov 1978, 1980) and the finiteness of the action transmission velocity in an ele-
mentary cause-and-effect link.

4. Kozyrev (1991) has not presented a strictly logical transition from the definition
(2.2) to the additional force formula (2.1) (such a transition is most likely impossible in
principle, since with only a single scalar quantity (c,) available no unambiguous conclusion
‘ - concerning a vector quantity, i.e., the additional force, can

a be made). Hence the quantity ¢, appearing in (2.1) must
not necessarily coincide with that defined by (2.2).
A In connection with the shortcomings of this defini-
tion it would be reasonable to try to formulate another
definition of the course of time, retaining the essential fea-
tures of the quantity ¢, described by Kozyrev (1991) but
free of these shortcomings. Such a definition is suggested
below.

Ifig.l.dA pa:jr of collipe_ar vector Based on the propositions of causal mechanics, we
@ and pseudovector @ shall assume that time interacts in different ways with
The shown direction of the| = . . .

pseudovector & corresponds to rlg_ht- and Ioft-rlanlded phy_soal systems by its active prop-
the marked circle round travel| erties. A pair (a,w) conssting of a vector a and a pseu-

direction in a right coordinate| qoyector v collinear to each other, is one of the Smplest
System. mathematical objects distinguishing the right from the left
(Fig.1). (A smple example: a motion in the direction pointed by the vector a combined
with a rotation defined by the pseudovector 0 is right-hand-screw if the directions of a
and o coincide and left-hand-screw otherwise.) Assume that the course of time is de-
scribed exactly by such a mathematical object. Then it may obviously manifest itself in
physical systems whose kinematics is characterized by a similar vector pair. Thisis just the
case in the experiment with a vibrating gyroscope d@crlbed above, where such a kine-

meatic pair is formed by the gyroscope acceleration &= ak due to its vibration and the an-

gular velocity of its rotation (o wk (here ais ascalar, w is a pseudoscalar, k is the di-
rection unit vector of the rotation axis).




It can be assumed that the action of the physical properties of time on the gyro-
scope results in appearance of the addition Aa and Aw to the values of a and w, which are
monotonic functions of these values, satisfy the condition Aa= Aw= 0 if aw = 0 and have
signs depending on the mutual orientation of the vectors a and . Then we can write
down in the linear approximationinaand w:

Aa=tkzaw; Aw==*k,aw, (2.3

where kg and kg, are dimensional coefficients; the signs are positive for one mutual orien-
tation of the vectors a and & and negative for the other.

In gyroscope vibration its acceleration a regularly changes its sign, whereas the
angular velocity w remains unchanged. The time average of the addition Aa turns out to
be nonzero despite the fact that the average acceleration being zero. Thisis related to the
fact that the sign of Aa is the same for any half-period of vibration because it depends on
both the sign of a and the mutual orientation of & and w changing together with the sign
changing of a. Multiplying the mean value of Aa by the gyroscope rotor mass, we obtain
the mean value of the additional force acting on the gyroscope:

AD| = kalal Vo . (2.49)
Rg

Here the relation w= V/R is used; besides, the rotor mass is taken to be equal to the whole
gyroscope mass d/g as it was done by Kozyrev (1991); R and v are the mean values of the
rotor radius and its linear rotation velocity, respectively; ® is the gyroscope weight; g is
the free fall acceleration; an overbar denotes the time averaging operation. We do not
specify the sign of Ad, since the observable may always be fited by choosing the required
sgnin (2.3). The quantity A® may be obvioudly interpreted as a change of the gyroscope
weight.

Let us compare (2.4) with the relation (2.1) obtained experimentally. It is seen that
Eq.(2.4) incorporates the same dependence of the additional force on the linear rotation
velocity of the rotor v and the gyroscope weight ® as does the relation (2.1). This sug-
gests that the first equality from (2.3) should be valid, since it isjust the basis for Eq.(2.4).
It should be emphasized that a distinction between the factors by v® in Egs. (2.1) and
(2.4) does not argue against this conclusion. The point is that the relation (2.1), being just
an expression of particular experimental data, is of restricted nature. In particular, it ne-
glects a dependence of the additional force on vibration intensity and on the geometric pa-
rameters of the gyroscope, which should occur in redlity and is apparently taken into ac-
count by just the above factor in Eq.(2.4).

Thus, we have confirmed the validity of the first equality from (2.3). It is clear that

the coefficient kg appearing in this equality may depend on the vibration characteristics
and the gyroscope size. Assume that the second equality in (2.3) holds as well and the co-

efficient k¢, in it depends on the system properties in the same way as the coefficient kg
(Aw was not measured by Kozyrev, hence this assumption cannot be compared with the



experimental data). Then the ratio Aa/Aw is a pseudoscalar having the dimension of veloc-
ity and independent of the specific properties of the system under study.

It is natural to adopt the quantity Aa/Aw to be the course of time c,. One eas-
ily assures that it is free of the mentioned shortcomings of the “old” definition based on
the relation (2.2).

The proposed approach to defining the course of time admits extension to physical
systems unrelated to rotating bodies. Other quantities, e.g., energy flux density and the
density of volume force moments, can play for such systems the same role as the pair
(a,w).

Remark. The content of the present section follows a manuscript of April 1979.
The manuscript was discussed with N.A.Kozyrev who made the following two remarks.

1. In the case depicted in Fig. 1 the momentum conservation law appears to be
violated due to an uncompensated force acting on the system if a is an acceleration.
Meanwhile, the validity of this law has been verified to a high accuracy in specia experi-
ments when both the source of vibration and the gyroscope were placed on the same bd-
ance pan. In such experiments additional forces were not detected.

2. Equation (2.4) contains the rotor radius R. To bring it to the form (2.1), it is

necessary to assume that ky [JR. However, in such a case the physical meaning of formula
(2.3) is unclear. Experiments with gyroscopes whose rotor had the shape of a thin-walled
glass (so that the condition R = const was fulfilled to a good accuracy), as well as an
analysis of planet figure asymmetries and an investigation of the latitudinal dependence of
the gyroscope weight change effect convince that the ratio v/R = win formula (2.4) should
be replaced by the linear velocity v of the points of the rotor.

Figure 2, depicting a possible
system of vectors for the cause-and-
effect link as a whole, answers
N.A.Kozyrev's first remark. It is seen
that the uncompensated forcesaredo- | _3 —_ @ o a
sent in such a system and the momen-
tum conservation law remains valid.
However, the author has no answer to |Fig.2. A possible system of vectors for two interacting
the second remark. objects.

3. Forces due to the action of time

According to N.A.Kozyrev's causal mechanics (Kozyrev 1991), the action of time
on our World is realized in cause-and-effect relations. Due to this action in the causal rela-
tions there appear small forces in addition to the conventional ones taken into account by
classical mechanics. These forces are directed in such away that they should lead to a mir-
ror asymmetry between the cause and the effect, responsible for an objective difference
between them in causal mechanics.
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N.A.Kozyrev's papers edfy the values of the additional forces as applied to the
case when arotating perfed top is incorporated in the caise-and-effed link as one of the
components. We would like to suggest possble generalizations to the caes of arbitrary

pairs of interading material points.

a)

Fc E
h———-ﬁ
C E

b) .
e =0
¢ Vi:’ £
C

Fig.3. An éementary cause-and-effed link consisting
of two material points:

a— the forces ILZC and ILZe having a common line of
action; b — the lines of action of the forces ILZe and ILZC
are paralle but do not coincide; C — the ause, E—
the dfed; ILZC and ILZe — the action and reaction forces;

|1:C= —Ilze; ¢ — the forces' defledion angle from the
straight line CE.

Following N.A.Kozyrev, let us
consder an elementary cause-and-
effed link consisting of two material
points, a caise point and an effed
point, with nmo other materia body
between them. We shall assume that
the caise point C ads on the dfed
point E by the force F,, and the dfea
E reads on the caise C by the reacion
force .. Acoording to Newton's third
law the forces of adion and readion
are gqua in magnituqe and opposite in
diredion, i.e., F,=—-F,. In addition to
Newton's third law, theoreticd me-
chanics aways asaumes that the inter-
action forces between any two internal
points of the system act along one and
the same line (Polyakhov et al. 1985
p.137). As applied to the caise-and-
effed link under consideration, tlhis s
sumption means that the forces F, and

Il:e are direded aong the straight line conneding the points C and E (Fig.3a).

Let us note the fad that classcd medianics does not consider the asumption of
orientation of internal forces to be such a fundamental law of nature & Newton's laws.
Moreover, theories ladking such assumptions have been constructed for long in continuum
medanics, one of the branches of classcd medanics (Sedov 1983. The moment theory
of elasticity, elaborated as ealy as at the dawn of the twentieth century, provides an ex-
ample for such atheory (Nowadki 197Q Chapter 13). On breaking with that assumption,
the forces of adion and readion may appea to be direded along cplli nea but uncoincid-
ing lines (Fig.3b). Newton's third law remains valid, as before, i.e., F.=-F,.

Suppose that the “interference”of time in the causal relation leads just to bre&ing
the &ove assumption. Namely, let us assime Ehat the adion of time manifests itself in a
deviation of the vedors of the forces F, and F, from the straight line by the same agle

¢J[0,172] to opposite sides. Threepossble versions of such a deviation can be suggested.
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Version 1. Let the deviations of the forces IL:C and IL:e from the straight line CE

be accompanied by their rotation about this line in the same direction with a certain angu-
lar velocity @ (Fig.4a). In this case the
two components of the cause-and-
effect link turn out to be objectively
different. Indeed, looking at one of the
components from the place where the
other is located, we see the rotation of
the force vector occurring anticlock-
wise, and looking at the other compo-
nent from where the first component is
located, we see rotation of the force
vector occurring clockwise. So this
version relates the difference between
the cause and the effect to that be-
tween the right and the left in our
World, as it should be the case in ac-
cord with the fundamentals of Kozy-

Fig.4. A possible influence of time on a causal link:

a—the deflection of the for ces IIZC and IIZe from the
straight line CE by the angle $J[0,172] with thelr rota
tion around this line with the angular velocity ¢ (F

=-F ) b — appearance of the additional forces K
and Ke perpendicular to the line CE and rotating

rev's causal mechanics.

Let us introduce a Cartesian
right-handed rectangular coordinate
system {O, x, Y, z} with the Ox axis
paralel to the straight line CE pointed

from the cause to the effect, as shown
in Fig.4a. Denote the unit vectors of
the Ox, Oy, Oz coordinate axes by

11 1

i, ], k, respectively. Then the force F

in a position deflected from the line CE can be represented in the form of the sum of three
components along the coordinate axes:

around it with the angular velodity & (Ko =-K_);
this case coincides with * a in thelmear apprOX|mat|on
|n¢for smal ¢ and DK 0= DF Odan¢, DK 0=

Fo = Pl + Ry + Figk, (3.1)
its projections on the coordinate axes being described by the formula
Fex = FCOSB;
Fey = FsinBcog/wy (t - tq)];
Fez = FsinBsin[wy (t—tg)] . (3.2)

Here F :DIL:eDisthe force magnitude; the force magnitude in this case coincides with that

qiven by classical mechanics; 0 is the angle between the unit vector ll and the force vector
Fe,0<8 <1 (6=¢ for 0< 6 < 102, which occurs when the effect repels the cause, and
0=€m=¢ for 1U2 < O < 11, Which corresponds to attraction of the effect to the cause,
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where ¢ is the deflection angle of the forces F and F from the line CE); wy = (l;)ﬁ IS
the prolectlon of the angular velocity pseudovector ® on the Ox axis (in our case
(o Wy 1); to is atime parameter characterizing the rotation phase of the force F Cer-
tainly the force FC may be decomposed into similar components differing from those of
Fe only by sign.

For asmall angle ¢ (¢ << 1) this version of the action of time can be presented (in
the linear approximation in ¢) as the appearance of small, oppositely directed additional
forces RC and Re applied to the cause C and the effect E. We denote these forces by the
letter K after Kozyrev's name. The forces RC and Re are orthogonal to the straight line
CE, rotate about it with the angular velocity d) and wtisfy the relations

(3.3)

where the forces FC and IL:e are now directed along the straight line CE (Fig.4b). Here

As seen from (3.2), in the version under consideration the three scalar quantities:
the angle ¢ (or 6), the angular velocity projection wy and the parameter tg are characteris-
tics of the action of time on the causal connection. The parameter tg, setting the force ro-
tation phase, most likely should not manifest itself in macroscopic experiments (in a similar
way phases of thermal oscillations of atoms fail to affect the macroscopic properties of
bodies). Thus only two quantities: ¢ and wy may be regarded as essential characteristics of

the action of time.
Assume that these quantities are related by a dependence close to

w=wgtand, (3.4)

where 0 =|owy| = |(10| is the absolute value of the angular velocity pseudovector ®; uy is a

constant of frequency dimension. Then at ¢ = 0 we obtain the case studied by theoretical
mechanics, with the system being purely determinate. On the contrary, at ¢ =172 the
causal action completely disappears and the system becomes absolutely indeterminate (the
latter follows from the fact that at ¢ = 172 the forces F and F are directed perpendicular
to the straight line CE and rotate about it infinitely rapidly and therefore their time aver-
ages over any time interval turn out to be exactly zero). The existence of the two limiting
states of a system, one drictly determinate and another absolutely indeterminate, is in
complete agreement with the ideas of causal mechanics.

13



Fig.5. One more possible action of time on a causal link:

a—the deflection of the forces IIZC and IIZe from the straight line CE in
the plane 3 by the angle ¢ depending on the relative velocity \r/e; b—
the appearance of the additional forces }1<C and }1<e described by the
expressions (3.6) and (3.7) or (3.9) and (3.10); K =-K
locity of the effect point E with respect to the cause point C; \r/C — ve

1

. r
oy Vg — Ve

I00|ty of the point C with respect to the point E, v

r .
N Ve’ Fel’ I:(32’
Fcl, F

-, — the components of the action (F ) and reaction (F )
forces directed along the line CE and perpendicular to it; o —the plane
containing the relative velocity vector v e and the straight line CE; B —
the plane perpendicular to a and containing the line CE; 1ie and 1iC —
the unit vectors lying at the line CE and directed from the point C to the
point E and from E to C respectively; l'c = —lie .

Version 2. Let
the forces K, and Fg

deviate from the straight
line CE as follows. If
the relative motion ve-
locity of the cause C
and the effect E is di-
rected along the straight
line CE or equal to zero,
a deviation is absent. If
the relative velocity of
the points C and E is
directed at a certain an-
gle to the straight line
CE, there occurs a de-
viation of the forces in
the plane perpendicular
to another plane con-
taining the vector of
relative velocity and the
straight line CE. As this
tak&e place the forces
F and F deflect from

the straight line CE in
opposite directions by
the same angle, as we
have agreed before
(Fig.5a).

One of the two
possible directions of
force deflection in the
above plane can be de-
fined for each element
of the cause-and-effect
link in the following

way. Consider three vectors: (i) the velocity with which the element under consideration
moves with respect to the other one, (ii) the component of the force acting on it, directed
along the straight line CE, and (iii) the component of the same force directed perpendicu-
lar to the line CE. Let us ascribe numbers to these vectors in the same succession as they
are listed and assume that a deflection of the force from the straight line occurs in such a
direction that the above ordered triad of vectors form aleft frame for the cause point and a
right one for the effect point. We shall assume that the force deflection angle from the
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straight line CE depends on the relative motion velocity of the cause and the effect in such
a way that it vanishes when the relative velocity vector direction approaches that of the
line CE.

Let us consider this version in more detail for the case of small ¢. In this case the
force deflection from the I|ne CE may be regarded as a consequence of action of the small

additional forces K and K directed perpendicular to the line CE and connected with the
angle ¢ by therelations

(3.5)

(Fig.5b). We shall assume that the additional forces are described by the expressions

I 1r I

Ke _Ve X Fe ] (36)
C2

I I

Ke=-1¥.xF, (3.7)
C2

where the forces of action (IL:e) and reaction (FC) are directed along the line CE; \lle Isthe
velocity of the effect point E with respect to the cause point C,; \llc = —\I/e; C IS a pseudo-
scalar parameter of velocity dimension, ¢, > 0 in a right-handed coordinate frame (the
pseudoscalarity of C |s requwed to compensate the pseudovector nature of the vector
product). From F F and vC = ve it follows that K Ke, as expected. Since we
are considering the case ¢ << 1, one can write with (3.5), (3.6).

1
Ke

R le2]

Dr
d =tand = |ve|sm(ve ), (3.8)

Or
therefore the condition |\1;e|sin(\1;e , Fe) <<|c;| should be satisfied. For smplicity we shall
assume that |\r/e| <<|c,|. We shall discuss Egs. (3.6), (3.7) below, after describing the third
possible version of the action of time on the causal connection.

Version 3. Assume that the forces IL:C and IL:e deflect from the straight line CE in
the same way as in Version 2 with the only exception: the deflection direction is deter-
mined by another ordered triad of vectors. Namely, let us take the following three vectors:
(i) that of relative velocity of the element under consideration of the cause-and-effect link;
(if) the unit vector lying on the straight line CE and pointed towards the given element (off
the other); (iii) the component of the force acting on the given element, directed perpen-
dicular to the line CE. (In Version 2 the force component directed along the straight line
CE was taken as the second vector.) Assume that the deflection of the force from the
straight line CE occurs in such a way that the above three vectors, numbered in the above
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order, form a left frame for the cause point and a right one for the effect point. The force
deflection angle ¢ is assumed to be the same asin Version 2. . .
For small ¢ one can again replace the deflections of the forces F, and F, from the

line CE by adding small additional forces RC and Re perpendicular to this line and satis-

fying the relations (3.5). We shall assume that these forces are described by the expres-
sons

r 1 r
C2

r 1 r
C2

where F= ; |e and i. arethe unit vectors lying on the straight line CE, so that

ie Is drawn from the point C towards the point E, and ic Is drawn from the point E to-
wards the point C (iC: —ie); the other notations are the same as in Egs. (3.6) and (3.7)

(see Fig.5h). Here, as well as in Version 2, we assume that the condition (v (k<[Et,0is
fulfilled.

Now let us consider a particular case. Let the cause point C be at rest in a certain
inertial frame of reference, and the effect point E revolve uniformly about it along a circle
centered at the point C. In this case the relative velocity \lle Is perpendicular to the straight
line CE and directed along a tangent to the circle, therefore Egs. (3.9), (3.10) can be
transformed to yield

r \V; r

Ke:—FI ; (3.11)
C2

r \V; r

Ke= -——F (3.12
C2

where v =|Vg|=|V¢|; | is a unit pseudovector perpendicular to the vectors Ve and g

and pointed in the same direction as the pseudovector \I/eXie. Equations (3.11) and

(3.12) are in agreement with those for the additional forces in causa mechanics (Kozyrev
1991). It is by similarity with the latter that we introduced the notation ¢, for the parame-
ter entering in the right- hand sides of our formula Note that if the cause-effect interaction
is of repulsive nature, then F = Fle , F = FIC, and Egs. (3.6) and (3.7) from Version 2
acquire the form (3.9), (3.10). Therefore in this particular case they can be converted to
(3.11), (3.12) as well. Thus, Versions 2 and 3 proposed for the action of time on the

cause-and-effect connection may be regarded as possible immediate generalizations of the
corresponding propositions of causal mechanics.

It should be noted that the difference between Versions 2 and 3 manifests itself most noticeably in
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the case of a sign-variable interaction between the cause and the effect: as signs of the forces ILZe and ILZC

change, the additional forces I1<e and I1<C in Version 2 change signs as well, whereas in Version 3 they

remain unchanged. Also note that, strictly speaking, the appearance of additional forces of a certain mag-
nitude and a deflection of the “dassical” forces by the angle determined by Egs. (3.5), are not identical

results. However, for additional forces much lessin magnitude than the “dassical” ones these results differ

by second-order small quantities and are indistinguishable within the measurement accuracy achieved in
N.A.Kozyrev's experiments.

A distinctive feature of the additional forces F(e and F(C introduced in Versions 2
and 3, isthat in total they do not performwork over the cause-and-effect link.
Indeed, the total increment of work AA of these forces for a short time interval At
amounts to
AA = Ko TiAt + K iGAt (3.13)

where be and bc are the effect and cause velocities with respect to the inertial frame of
reference under consideration. Taking into account that K.=-K, and that the effect
moves with respect to the cause with the velocity \lle: be— bc , we obtain from (3.13):

I I
AA = Kg [l — Ug) At = Ko AL .

Since the additional force F(e, according to Egs. (3.6), (3.9), is perpendicular to the ve-
locity vector \lle, we obtain finally that AA = 0.

This result is of fundamental significance. It means that no additional expenses of
work are required to realize actions on the cause-and-effect link described in Versions 2
and 3. The system energy also remains unchanged under such an actlon Also note that

since the principal vector of the additional forces is zero, K +K = O the total momen-

tum of the system remains unchanged. At the same time, this action can change the angu-
lar momentum of the system and the trajectories of the cause-and-effect link elements.
Probably it is just the version of the action of time on causa connections to which
N.A.Kozyrev inclined as his ideas were developed. In his first publications on causal me-
chanics he wrote that time was able to augment the energy of a system, while in more
recent papers he asserted that time, via its active physical properties, increases the order
of matter, preventing (to some extent) an increase of entropy in a system, i.e,, it actsas a
source of negentropy in our World.

Thus we have considered three possible versions of force vector deflection from
the straight line connecting the interacting points. This deviation cannot be explained
within the framework of classical mechanics by the properties of the cause-and-effect link
itself due to its symmetry. Material pointsin classical mechanics have no internal structure,
hence their symmetry coincides with that of a geometric point. That implies that among
the elements of symmetry of a cause-and-effect link there is an infinite order rotation axis
passing through the cause and effect points, and mirror symmetry planes containing the
rotation axis. With these elements of symmetry available, no internal cause is able to devi-
ate the interaction force from the rotation axis in some direction (as it is the case in Ver-
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sions 2 and 3) or lead to its deviation and rotation in a certain direction (as in Version 1).
Hence, from the viewpoint of classical mechanics, a deviation like those described could
result only from causes external with respect to our cause-and-effect link.

The above three versions of the action of time on a cause-and-effect link are, of
course, not the only possible ones. However, which of these or other possible versions re-
flects the reality appropriately, can be decided only from the results of special experiments.

As seen from the present section, in classical mechanics itself there exists a poss-
bility of force deviation from the straight line connecting the interacting points (there is,
however, no physical reason for such a deviation in a certain direction). Therefore Kozy-
rev's causal mechanics may be regarded as a natural development of Newton's classical
mechanics.

4. On inaccuracy of force representation in classical mechanics

By the fundamental postulates of causal mechanics, a cause and an effect are sepa-
rated by arbitrarily small but nonzero space (dx) and time (ot) differences, with the time
difference being of a definite sign since an effect comes after a cause. N.A.Kozyrev has
called the ratio of these quantities the course of time cy:

Co = BX/3t . (4.1)

The proposition that a cause and an effect cannot be spatially superimposed is used
in classical mechanics as well. This proposition follows from Newton's third law according
to which the forces of action and reaction are applied to different bodies, meaning that
there necessarily exists a nonzero spacing between the force application points. At the
same time classical mechanics neglects the time difference between the cause and the ef-
fect. It is aso apparent in Newton's third law, where the forces applied to the cause and
the effect act at the same instant. Thus one can say that classical mechanics is a degenerate
case of causal mechanics corresponding to the following values of quantities: dx#0, &t=0
and c; = (Kozyrev 1991).

Neglecting the time difference between the cause and the effect leads to inaccuracy
of setting the directions and magnitudes of forcesin classical mechanics. Let us show that.

Assume that the four-dimensional proper Euclidean space is a geometric image of
space and time (which is known not to be contrary to classical mechanics). Since the four
coordinates in this space should be measured with the same units, we assume, by analogy
with the theory of relativity, that the time coordinate is ct, where c is the velocity of light
In vacuum.

In the present section we shall interpret the quantities [dx[J]and [Btl differently
from what was done in Section 1. These quantities will be considered to be determinate,
I.e. taking quite definite values for specific cause-and-effect links, which may, however, be
different for different links. It is this treatment of the above quantities that was used in
N.A.Kozyrev's papers (which is to be judged only from the context, since this issue was
not discussed in detail by Kozyrev (1991)). We shall assume that Kozyrev's law
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|co| =[0%|/|8t| = ac

(4.2)

isvalid, where a is the fine structure constant (o = 1/137). It should be emphasized that in
what follows our attention will be focused on “classical” forces, while the addi tional ones,
considered in Section 3, will be discussed only at the end of the present section.

T
c(t+0t)
=34
ct] A
-fh Z ;:lix_l __

Fig.6. A cause C and an effect E in the process of a causal interaction:
1 1
F —the cause-effect interaction force; F, —the temporal component

of the force Ilz; ILZh —the component of F along the hyperplane of s-

multaneous events; [Bx[] [Bt[1—the spatial and temporal intervals b e-
tween the cause and the effect at a causal interaction; T —the time axis,
Hi, H, —the hyperplanes of smultaneous events, passing through the
cause and effect points, respectively; M.C —the world line of the cause

(only its part up to the instant t is shown); MeM'e —the world line of the
effect; E; —the intersection point of the hyperplane H ; and the world
line of the effect; E' —the projection of the effect point E on H ;; ¢ —the
velocity of light in vacuum; it has been taken into account that the effect
occurs later than the cause; the hyperplanes H; and H, are drawn with
the dimension reduced by one.

The fact that the
cause and the effect
manifest themselves at
different instants means
that they belong to dif-
ferent hyperplanes of
simultaneous events
(Fig.6). This raises the
question: “Where are the
forces, applied to the
cause and the effect, di-
rected: do they lie in the
corresponding  hyper-
planes of simultaneous
events or are they di-
rected along the straight
line connecting the
cause and effect points?’
Classical mechanics does
not allow one to make a
choice between these
possihilities. Therefore
we make use of consid-
erations of symmetry.
Since the cause-and-
effect link incorporates a
rotation axis, passing
through its points, as an
element of symmetry, it
IS natural to expect that
the force system con-

nected with it, has the same symmetry. This gives a ground to believe that the interaction
forces are directed along the straight line connecting the cause and the effect, as shown in
Fig.6. Such an orientation of forces fits the relativistic symmetry of space and time as well.
(Note that this consideration does not apply to the additional forces of Section 3, since the
symmetry of the latter is determined by the properties of not only the cause-and-effect link

but those of time aswell.)

19



Fig.7. The projections of a cause-and-effect link onto
hyperplanes of smultaneous events passing through
the cause point C (a) and the effect point E (b):

Ilzh — the cause-effect interaction force component
directed aong the hyperplane of simultaneous events;
Ilzd — the force considered in classical mechanics;

Y, P, —the angles between the forces Ilzh and Ilzd ;

E, —the intersection point between the world line of
the effect and the hyperplane of simultaneous events
passing through the cause point; E' —the projection of
the effect point E onto the same hyperplane; C, —the
intersection point of the cause world line and the hy-
perplane of simultaneous events passing through the
effect point; C' —the projection of the cause point C
onto the same hyperplane; [dx[] [t — the cause-
effect spatial and temporal intervals during the causal

interaction; Lrje, {J"e Lrjg — the effect velocity vector
and its components parallel and perpendicular to the

—

1 r r r :
force F,; uc,ultl: ,uf —the same for the cause; | —

1
the unit vector along the line of action of the force F,,
directed from the noint C (ar C) to the naint E' (or F).

just in neglecting that possibility.

Being directed as described, the
interaction forces have a nonzero tem-
poral component neglected by classical
mechanics. Let us find a relation be-
tween this component and that lying
within the hyperplane of smultaneous
events. As a draight line, being pro-
jected onto a hyperplane, passes to an-
other st[aight line, the interaction force
vector F and both of its components lie
in the (two-dimensional) plane passing
through the three points: the cause
point C, the effect point E and the point
E' (where E' is the projection of the
point E onto the hyperplane of smulta-
neous events corresponding to the point
O). Qne of the components of the vec-
tor F is perpendicular and the other is
parallel to the segment CE'. Taking this
fact into account, one can see from
Fig.6 that the component F directed
qlong the time axis and the component
F, directed along the hyperplane of

simultaneous events are connected by
the relation

R /|F| = clot]/[x].

Hence, using the law (4.2), we find
r r 1.r r
Fl=g = 2h)=197f). @3

Thus generaly the condition
ot # 0 may result in the appearance of a
time component of the interaction
force. One of the inaccuracies of han-
dling forces in classical mechanics lies

Needless to say that the assertion of interaction forces being directed along the line connecting
the cause and the effect is no more than a hypothesis. Other versions are also possible. For ingtance, if, as
it is done in relativity theory, one determines the force as a derivative of the momentum with respect to
time, it will necessarily lie in the hyperplane of simultaneous events, since the momentum vector lies
there. At the same time, as long as the question of a real direction of the interaction forces has not been
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conclusively solved, it is necessary to take into account the possibility that the time component be present
in the forces.

In classical mechanics an inaccuracy of force representation is aso present due to
neglecting a mutual displacement of the cause and the effect taking place during the time
interval ot. Let us estimate thisinaccuracy.

In classica mechanics it is assumed that the cause and the effect happen at the
same instant. This means that the interaction forces are applied at the points of the world
lines of the cause and the effect located at the same hyperplane of simultaneous events. If
ot # 0, then such a hyperplane may be arbitrarily chosen among the hyperplanes placed
between those of the cause and the effect (both are shown in Fig.6).

Let us analyse the extreme situations when just these two surfaces serve as the hy-
perplane considered in classica mechanics (Fig.7). The figure demonstrates that in these
two cases the segment connecting simultaneous events of the world lines of the cause and
the effect is directed differently and varies in length due to their mutual displacement
(these are the segments CEp and CoE in Figs.7a and 7b, respectively). The interaction
force considered in classical mechanics is directed just aong thi§ segment and is unambi-
guously determined by its length. In the figure it is denoted by Fy. At the same time the

component LFh of the real interaction force F has another direction, namely, along the

segment connecting the projections of the cause point C and the effect point E onto the
hyperplane of smultaneous events (theseare CE' and C' E in Figs and 7b, respectively).

Note that the line of action of the component F, is the same for any direction of the inter-
action force F in the plane CEE' (see Fig.6), in particular, when a time component of the
force is absent, i.e, for F=F, . It should be noted as well that the (two-dimensional)
planes where the prototypes of the system of vectors depicted in Figs.7a and 7b lie, may
be non-coplanar in the four-dimensional space; howeverl, the straight lines belonging to
those planes and labelled in the figures by the unit vector i, are mutualy collinear.

Let us first estimate the direction inaccuracy of the force IL:CI , heglecting the inac-
curacy of its magnitude.

Assume that the accelerations of the interacting points are so small that the world
line segments passed by them for the time interval ot, are close to rectilinear. Then the
projections of these segments (i.e., the lines EgE' and C'o@ Fig.7) are close to rectilinear
aswell. Hence it is easily assured that the angles 1 and > between the forces LFh and IL:d
are expressed as follows:

SR ) B 1
o - it oy |- it
r r
any, = e el
ox|— 10l |5t [c,| - i, (4.4)

21



where bg and alL are the components of the effect motion velocity, perpendicular and

parallel to the force IL:h respectively; bg] and lljl(l; are the same for the cause; i isthe unit

vector lying on the line of action of the force IL:h and directed from the point C (or its
projection C' ) to the point E' (or E); here the law (4.2) has been used.
We shall assume that the velocities of motion of the effect be and the cause bc are

small compared with the constant c,: O, [(k<[T,0] Ol k<[t Then, based on (4.4),
one can write (in the linear approximation in DﬁeDEt:zEl Dbc dre0)

Wy = U5/ [co] <<1; Wy =[UE|/ fey] << 1. (4.5

In this case the difference IL:h - IL:d Is approximately described by the following formula for

the two cases under consideration, assuming that the lengths of the vectors IL:h and IL:d are
nearly equal (see Fig.7):

r r gL E _

ARy = V@er v|C2||Hq|,

iR v R, =y E R, 9)
ug] =

where y = sign( th i ). The coefficient y sets the sign of the expression which depends on
whether the cause and the effect attract (th ﬁ < 0) or repd (th ﬁ > Q) each other; the
factors bg /Dbg Oand bg] /Dbg] Oserve as a direction unit vector setting the direction of
the force IL:h F

From the relations (4.6) it follows that the inaccuracy of the action direction of the
force IL:d can be compensated by adding to it an additional force IED egual on the average

to
r + uc

o= 2|02|

i (4.7

The same relations imply that the extreme positions of the force IL:C| depicted in Figs. 7a
and 7b differ by the value A i equal to

r vO T
AFY = yﬁ|l3h| , (4.8)

where \llg] Is the component of the motion velocity of the effect \lle with respect to the
cause (\lle:ll,le—ll,lc) perpendicular to the force F,. It should be noted that the quantity
AIL:CF is of invariant nature since it is determined by therelative velocity of motion of the
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cause and the effect, whereas the quantity IL:D , being connected with the absolute veloc-
ity values, depends on the choice of the frame of reference and hence is not invariaqt.
Let us now estimate the inaccuracy of setting the magnitude of the force Fy (ne-

glecting the inaccuracy of its direction).
Congsider atypical interaction law such that

|£cl| = :_21 (4.9

where f denotes all the relevant quantities except the distance; r is the distance between
the interacting material points. By the postulates of causal mechanics, a spacing between
the cause and the effect in interaction is [dx[1 Meanwhile in the two cases depicted in
Fig.7 the spacings r, and r, between the application points of the “classical” forces (i.e. the
lengths of the segments CEg and CoE) are other than [®x[Jand amount to

I T e

; 4.10
cosy; 2 cosy, (4.10)

In the case of Dbe [k<[ty00and Dbc [k<[t,[] as follows from Egs. (4.5), the ap-
proximate equalities cos); = 1 and cos), = 1 are valid (in the linear approximation in
[t CE,0and [t ICE,D). Based on the latter and the law (4.2), we obtain from (4.10)
the following values of rq and r»:

r
0 idiH

0 iglc
rl:bx'%_—l%lea r2=|5x|é+1——|02| a (4.11)

A substitution of these distance values into (4.9) gives the following values for the force
magnitudes:

r
r f 0O 5iglo
Fyl= ~Fd+2-—eU
Fal=— i f S
|5x|2§¢—' e ]
lca| H
r
by f 0 i | O
Fa|= ~Fd+2—1 (4.12)
| C|| |6 |2|:| f[ﬂ(l: g % |C2| E
X —
kel B

where F = f/[Bx[F is the real value of the “classical” interaction force magnitude.
From EQs.(4.12) it follows that the inaccuracy of setting the magnitude of the
force Fy may be compensated by adding to it a supplementary force F" egual on the av-

erageto
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r ﬁll + 0
Ro=-y= < —e "¢ F (4.13)
c|

where it has been taken into account that the vectors ll |(|a , u|(|: and IL:h are mutually
collinear and approximetely parallel to the vector Fy. From formula (4.12) it follows as
well that the range of magnitudes of the force Fy in these two cases is such that the cor-

responding differential force A F"I IS

r
AR = —y2e (4.14)

where \I;LL Is the component of the relative velocity of the effect \lle parallel to the force

IL:h. Here, as before, the force AF"I Is an invariant quantity, while F" IS not.

uUsing (4.7), (4.8), (4.13) and (4.14) in practice, it is convenient to express the
forces they set in terms of the mean value of the “classical” force. In the following just this

mean value will be denoted by IL:d . Since these forces are small compared with IL:d , the
formula obtained will remain valid (in the linear approximation in |ae|/|C2| and |ac|/|C2|

as considered), if one substitutes the real forces in them by their approximate “classical”
value and, moreover, assumes that the velocity components denoted by the symbols | and

|| are directed in perpendicular and parallel to the force IL:d but not to the force LFh Per-

forming these changes, we conclude on the basis of (4.8) and (4.14) that the difference
between the extreme values of the “classical” force can be presented in the form of a sum
of two components, of which the first one is perpendicular and the second one parallel to

the force IL:d :
AFcI = | 2|F (4.15)

||
AII;(IL = y (4.16)
|Cz|

wherey = sign( Ilzd i ); F:DIL:d (1 By (4.7) and (4.13), we arrive at the conclusion that the
supplementary forces to be added to the “classical” force IL:d to compensate the inaccura-
cies of its direction and magnitude, are of the form
ug] + uc
2lc|

r
Fh=y F; (4.17)
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the first one of these forces being perpendicular and the second one parallel to the force
Fy . Recall that the interaction law (4.9) was used in deriving Egs. (4.16) and (4.18).

Let us unify al that with the temporal component of the interaction force, as it has
been discussed earlier. From (4.3) it is eesily obtained that

|Fh| (4.19)

el Izl

where V is a “velocity” of motion of our World along the time axis ( Y, |s parallel to the
time axis, directed from the past to the future and has the magnitude c: mY; 0=€c); here it
is taken into account that the vector Ft is pointed in the same direction as the vector V in

the case of repulsion and oppositely in the case of attraction (see Fig.6).

Thus in classica mechanics the interaction force proves to be inaccurately fixed
due to a neglect of time difference in the instants of appearance of the cause and the effect.
It has an error in the components values along the three mutually perpendicular directions:
the time axis and two directions lying in the hyperplane of simultaneous events — along
the force itself and perpendicular to it.

In Section 3 one more inaccuracy of the “classical” force, the one due to a specific
action of time, was discussed. Let us write down all the four additives compensating the
Inaccuracies of the “classical” forces as applied to a particular case of the cause point b e-

ing at rest (U = 0). Using Egs. (3.11), (4.17) - (4.19), we obtain

g I v
T |VD|I' r VD r v r V
K.="5lIF; R =-y—&F, F=y—F. (4.20)
oTie, TV P A T g P RS

Here we have taken into account the following: (a) the cause-and-effect link as
considered in Section 3 is actually a pair of smultaneous points on the world lines of the

cause and the effect, therefore the points C and E andlthe force IL:e from Section 3 are, in
fact, the points C and Eq (or Cp and E) and the force Ky from the present section, respec-
tively (cf. Figs:3 - 5 with Figs6, 7); (b) Eq. (3.11) written for the case of {,=0, Ul = 0
remains valid for U, # 0 as well if one substitutes the quantity v (equal to [Ve|) by |V
(since the component \l;llle does not contribute to the force Re according to (3.6) and

(3.9)); (0 ll,le:\lle for bC: 0. Note that all the four additional forces are mutually perpen-

dicular (recall that the unit vector | is orthogonal to the vectors \lle and IL:d )

Attention should be drawn to the fact that al the formula of (4.20) are of the same
kind. All the additional forces being described by them are, first, proportional to the abso-
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lute value of the “classcd” force and, second, proportional to the ratio of the crr e
sponding velocity to the constant c,. This gives one more, if only indired, argument in fa-
vour of introduction of the alditional force Re; at any rate in the asence of it the sym-
metry of the four linealy independent diredions of spacetime would have been violated.

Concluding the present sedion, we draw attention to a possbility of giving two
differept interpretations of the pattern depicted in Fig.6 (independent of whether or not the
force F has atime component). The first interpretation is based on the wnception of our
World as a three-dimensional hyperplane of exadly zero thicknessalong the time ais. In
agreanent with this ideathe figure under consideration is an image of two states of the
World separated by a time interval &t. Besides, there occurs an interadion between the
future and the past states of the World. Another interpretation is based on the assumption
of our World having nonzero thickness along the time axis or, speing in the spirit of
gquantum medanics, thereis a “smeaing” or “uncertainty” dong this axis. In this case one
might say that the pattern in Fig.6 depicts two interading material points belonging to the
same state of the World but lying inits different temporal sedions.
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