Course of time by N.A.Kozyrev is pseudoscalar velocity of causal-effect transition on level of an elementary link:

$$c_2 = \frac{\Delta r}{\Delta t},$$

where Δr u Δt are spatial and time differences figure in *axioms of causality*. From causal-mechanical experiments by N.A.Kozyrev $c_2 = +(2,2 \pm 0,1) \cdot 10^5$ m/s in the right co-ordinate system. From theory of the causal analysis:

$$c_{2} = \frac{e^{2}}{\hbar} \frac{(1 - i_{Y|X} / \gamma)(1 - i_{Y|X})}{i_{Y|X}(1 / \gamma - 1)}$$

where $i_{Y/X}$ is *independence* of observable Y on observable X, γ is causality. By classical (uncausal) dependence of the observables $c_2 \to \infty$. Zero course of time is rigorously impossibly. It is possible only $c_2 \to 0$ by $i_{Y/X} \to \gamma$. In the causal analysis c_2 is treated as velocity of irreversible transference of the informational redundancy from the cause to the effect.

S.M.Korotaev